Patents by Inventor MD Shazzad Hossain

MD Shazzad Hossain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11641200
    Abstract: A method for the delivery of power to subthreshold (sub-Vt) circuits uses unused current during idle-mode operation of super-threshold (super-Vt) circuits is used to supply sub-Vt circuits. Algorithmic and circuit techniques use dynamic management of idle cores when reusing the leakage current of the idle cores. A scheduling algorithm, longest idle time-leakage reuse (LIT-LR) enables energy efficient reuse of leakage current, which generates a supply voltage of 340 mV with less than ±3% variation across the tt, ff, and ss process corners. The LIT-LR algorithm reduces the energy consumption of the switch and the peak power consumption by, respectively, 25% and 7.4% as compared to random assignment of idle cores for leakage reuse. Second, a usage ranking based algorithm, longest idle time-simultaneous leakage reuse and power gating (LIT-LRPG) enables simultaneous implementation of power gating (PG) and leakage reuse in a multiprocessor system-on-chip (MPSoC) platform.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: May 2, 2023
    Assignee: Drexel University
    Inventors: Md Shazzad Hossain, Ioannis Savidis
  • Publication number: 20210359675
    Abstract: A method for the delivery of power to subthreshold (sub-Vt) circuits uses unused current during idle-mode operation of super-threshold (super-Vt) circuits is used to supply sub-Vt circuits. Algorithmic and circuit techniques use dynamic management of idle cores when reusing the leakage current of the idle cores. A scheduling algorithm, longest idle time-leakage reuse (LIT-LR) enables energy efficient reuse of leakage current, which generates a supply voltage of 340 mV with less than ±3% variation across the tt, ff, and ss process corners. The LIT-LR algorithm reduces the energy consumption of the switch and the peak power consumption by, respectively, 25% and 7.4% as compared to random assignment of idle cores for leakage reuse. Second, a usage ranking based algorithm, longest idle time-simultaneous leakage reuse and power gating (LIT-LRPG) enables simultaneous implementation of power gating (PG) and leakage reuse in a multiprocessor system-on-chip (MPSoC) platform.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 18, 2021
    Applicant: Drexel University
    Inventors: MD Shazzad Hossain, Ioannis Savidis