Patents by Inventor Meaghan O'Reilly

Meaghan O'Reilly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240041429
    Abstract: Systems and methods are provided for performing transcranial diagnostic procedures using a transcranial ultrasound transducer array. The array elements are positioned and oriented such that far field regions respectively associated therewith spatially overlap within the brain of a patient. The array elements may be oriented approximately normal to the skull, permitting efficient coupling of ultrasound energy into the brain. The array elements are controlled to generate ultrasound pulses, where the timing of the pulses is controlled, based on registration between the array elements and volumetric image data, such that ultrasound energy is focused at a target within spatially overlapping far fields of the array elements. The transcranial ultrasound transducer array elements may be positioned and oriented relative to the skull such that their respective ultrasound beams are focused within the skull and diverging with the brain.
    Type: Application
    Filed: October 6, 2023
    Publication date: February 8, 2024
    Inventors: Kullervo HYNYNEN, Alec HUGHES, Lulu DENG, Meaghan O'REILLY
  • Patent number: 11793490
    Abstract: Systems and methods are provided for performing transcranial diagnostic procedures using a transcranial ultrasound transducer array. The array elements are positioned and oriented such that far field regions respectively associated therewith spatially overlap within the brain of a patient. The array elements may be oriented approximately normal to the skull, permitting efficient coupling of ultrasound energy into the brain. The array elements are controlled to generate ultrasound pulses, where the timing of the pulses is controlled, based on registration between the array elements and volumetric image data, such that ultrasound energy is focused at a target within spatially overlapping far fields of the array elements. The transcranial ultrasound transducer array elements may be positioned and oriented relative to the skull such that their respective ultrasound beams are focused within the skull and diverging with the brain.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: October 24, 2023
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Kullervo Hynynen, Alec Hughes, Lulu Deng, Meaghan O'Reilly
  • Publication number: 20210330294
    Abstract: Systems and methods are provided for performing transcranial diagnostic procedures using a transcranial ultrasound transducer array. The array elements are positioned and oriented such that far field regions respectively associated therewith spatially overlap within the brain of a patient. The array elements may be oriented approximately normal to the skull, permitting efficient coupling of ultrasound energy into the brain. The array elements are controlled to generate ultrasound pulses, where the timing of the pulses is controlled, based on registration between the array elements and volumetric image data, such that ultrasound energy is focused at a target within spatially overlapping far fields of the array elements. The transcranial ultrasound transducer array elements may be positioned and oriented relative to the skull such that their respective ultrasound beams are focused within the skull and diverging with the brain.
    Type: Application
    Filed: July 6, 2021
    Publication date: October 28, 2021
    Inventors: Kullervo HYNYNEN, Alec HUGHES, Lulu DENG, Meaghan O'REILLY
  • Patent number: 11071522
    Abstract: Systems and methods are provided for performing transcranial diagnostic procedures using a transcranial ultrasound transducer array. The array elements are positioned and oriented such that far field regions respectively associated therewith spatially overlap within the brain of a patient. The array elements may be oriented approximately normal to the skull, permitting efficient coupling of ultrasound energy into the brain. The array elements are controlled to generate ultrasound pulses, where the timing of the pulses is controlled, based on registration between the array elements and volumetric image data, such that ultrasound energy is focused at a target within spatially overlapping far fields of the array elements. The transcranial ultrasound transducer array elements may be positioned and oriented relative to the skull such that their respective ultrasound beams are focused within the skull and diverging with the brain.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 27, 2021
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Kullervo Hynynen, Alec Hughes, Lulu Deng, Meaghan O'Reilly
  • Patent number: 10285593
    Abstract: Systems and methods for registering pre-operative medical images, such as computed tomography (“CT”) images, to the coordinate space of an ultrasound treatment system are provided. The registration is generally based on minimizing distances between locations associated with an anatomical feature, as identified from the medical images, and spherical surfaces defined by time-of-flight measurements for ultrasound data acquired from the anatomical feature by transducer elements. The locations associated with the anatomical feature, which may be a skull of the subject, can be points or planar surfaces define on the anatomical feature. The registration methods described here can be useful for aberration correction and targeting using an array of high-frequency ultrasound elements. In combination with cavitation monitoring and control, this ultrasound-based registration of CT images could eliminate the need for MRI during these treatments.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: May 14, 2019
    Assignee: Sunnybrook Research Institute
    Inventors: Meaghan O'Reilly, Kullervo Hynynen, Ryan Jones
  • Patent number: 10258314
    Abstract: Systems and methods for ultrasound imaging capable of achieving spatial resolutions that can resolve objects smaller than 300 ?m are described. Ultrasound is transmitted to and steered over a volume-of-interest that contains a microbubble contrast agent to individually excite microbubbles. Signal data is acquired in response to the transmitted ultrasound, and a plurality of images are reconstructed by beamforming the acquired signal data. The spatial resolution of the beamformed images can be further increased using techniques that determine the position of the microbubble within each image to a greater level of accuracy than the point spread function (“PSF”) of the ultrasound system. The images can also be combined to produce a single high resolution image of the volume-of-interest using, for instance, a maximum pixel projection technique.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: April 16, 2019
    Assignee: SUNNYBROOK RESEARCH INSTITUTE
    Inventors: Kullervo Hynynen, Meaghan O'Reilly, Foroohar Foroozan
  • Publication number: 20180177491
    Abstract: Systems and methods are provided for performing transcranial diagnostic procedures using a transcranial ultrasound transducer array. The array elements are positioned and oriented such that far field regions respectively associated therewith spatially overlap within the brain of a patient. The array elements may be oriented approximately normal to the skull, permitting efficient coupling of ultrasound energy into the brain. The array elements are controlled to generate ultrasound pulses, where the timing of the pulses is controlled, based on registration between the array elements and volumetric image data, such that ultrasound energy is focused at a target within spatially overlapping far fields of the array elements. The transcranial ultrasound transducer array elements may be positioned and oriented relative to the skull such that their respective ultrasound beams are focused within the skull and diverging with the brain.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 28, 2018
    Inventors: Kullervo HYNYNEN, Alec HUGHES, Lulu DENG, Meaghan O'REILLY
  • Publication number: 20180132723
    Abstract: Systems and methods for registering pre-operative medical images, such as computed tomography (“CT”) images, to the coordinate space of an ultrasound treatment system are provided. The registration is generally based on minimizing distances between locations associated with an anatomical feature, as identified from the medical images, and spherical surfaces defined by time-of-flight measurements for ultrasound data acquired from the anatomical feature by transducer elements. The locations associated with the anatomical feature, which may be a skull of the subject, can be points or planar surfaces define on the anatomical feature. The registration methods described here can be useful for aberration correction and targeting using an array of high-frequency ultrasound elements. In combination with cavitation monitoring and control, this ultrasound-based registration of CT images could eliminate the need for MRI during these treatments.
    Type: Application
    Filed: April 25, 2016
    Publication date: May 17, 2018
    Applicant: Sunnybrook Research Institute
    Inventors: Meaghan O'Reilly, Kullervo Hynynen, Ryan Jones
  • Publication number: 20160106395
    Abstract: Systems and methods for ultrasound imaging capable of achieving spatial resolutions that can resolve objects smaller than 300 ?m are described. Ultrasound is transmitted to and steered over a volume-of-interest that contains a microbubble contrast agent to individually excite microbubbles. Signal data is acquired in response to the transmitted ultrasound, and a plurality of images are reconstructed by beamforming the acquired signal data. The spatial resolution of the beamformed images can be further increased using techniques that determine the position of the microbubble within each image to a greater level of accuracy than the point spread function (“PSF”) of the ultrasound system. The images can also be combined to produce a single high resolution image of the volume-of-interest using, for instance, a maximum pixel projection technique.
    Type: Application
    Filed: May 2, 2014
    Publication date: April 21, 2016
    Applicant: SUNNYBROOK HEALTH SCIENCES CENTER
    Inventors: Kullervo Hynynen, Meaghan O'Reilly, Foroohar Foroozan
  • Publication number: 20140058293
    Abstract: Apparatus and method for delivering increased amounts of energy to localized treatment zones at a target location are provided. In some instances, using gated pulses of ultrasound in a multi-frequency applicator, microbubbles are generated or excited in or near the target location, for example in a patient's tissue or blood stream for enhanced delivery of ultrasound energy to the patient. Applications include ablation of diseased tissue, thrombolysis, blood-brain barrier disruption or tissue diagnosis.
    Type: Application
    Filed: May 23, 2013
    Publication date: February 27, 2014
    Applicant: Sunnybrook Research Institute
    Inventors: Kullervo Hynynen, Meaghan O'Reilly