Patents by Inventor MEDHAT AHMED NEMITALLAH

MEDHAT AHMED NEMITALLAH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10619571
    Abstract: A zero-emission, closed-loop and hybrid solar-produced syngas power cycle is introduced utilizing an oxygen transport reactor (OTR). The fuel is syngas produced within the cycle. The separated oxygen inside the OTR through the ion transport membrane (ITM) is used in the syngas-oxygen combustion process in the permeate side of the OTR. The combustion products in the permeate side of the OTR are CO2 and H2O. The combustion gases are used in a turbine for power production and energy utilization then a condenser is used to separate H2O from CO2. CO2 is compressed to the feed side of the OTR. H2O is evaporated after separation from CO2 and fed to the feed side of the OTR.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: April 14, 2020
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Patent number: 10196977
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: February 5, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Patent number: 10184396
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: January 22, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Publication number: 20180328278
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 15, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed NEMITALLAH, Mohamed Abdel-Aziz HABIB
  • Publication number: 20180320590
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 8, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed NEMITALLAH, Mohamed Abdel-Aziz HABIB
  • Patent number: 10107192
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: October 23, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Publication number: 20170284294
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Application
    Filed: April 19, 2017
    Publication date: October 5, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed NEMITALLAH, Mohamed Abdel-Aziz HABIB
  • Publication number: 20170218840
    Abstract: A zero-emission, closed-loop and hybrid solar-produced syngas power cycle is introduced utilizing an oxygen transport reactor (OTR). The fuel is syngas produced within the cycle. The separated oxygen inside the OTR through the ion transport membrane (ITM) is used in the syngas-oxygen combustion process in the permeate side of the OTR. The combustion products in the permeate side of the OTR are CO2 and H2O. The combustion gases are used in a turbine for power production and energy utilization then a condenser is used to separate H2O from CO2. CO2 is compressed to the feed side of the OTR. H2O is evaporated after separation from CO2 and fed to the feed side of the OTR.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed NEMITALLAH, Mohamed Abdel-Aziz HABIB
  • Patent number: 9702300
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: July 11, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Patent number: 9664115
    Abstract: A zero-emission, closed-loop and hybrid solar-produced syngas power cycle is introduced utilizing an oxygen transport reactor (OTR). The fuel is syngas produced within the cycle. The separated oxygen inside the OTR through the ion transport membrane (ITM) is used in the syngas-oxygen combustion process in the permeate side of the OTR. The combustion products in the permeate side of the OTR are CO2 and H2O. The combustion gases are used in a turbine for power production and energy utilization then a condenser is used to separate H2O from CO2. CO2 is compressed to the feed side of the OTR. H2O is evaporated after separation from CO2 and fed to the feed side of the OTR.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 30, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Patent number: 9383096
    Abstract: An oxygen transport reactor for boiler furnaces and gas turbine combustors that utilizes a liquid fuel that is oxidized as a gaseous fuel in a membrane reactor. A liquid fuel is introduced by vaporizing the fuel inside a porous pipe surrounded by an annulus reaction zone which is surrounded by an annulus air zone. An oxygen transport membrane separates the annulus reaction zone containing the porous vaporized fuel and sweeping CO2 from the air feed side zone. Oxygen is transported from the outer annulus through the membrane to the annulus reaction zone containing the vaporized fuel and sweeping CO2. Fuel is first cracked to very small droplets in the intake fuel atomizer utilizing part of the intake CO2 then completely vaporized inside the porous pipe utilizing the heat coming from the surrounding reaction zone. The oxygen transport reactor is applicable for carbon free boiler furnaces and gas turbine combustors which utilize oxygen transport reactors for combined oxygen separation and combustion.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: July 5, 2016
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Mohamed Abdel-Aziz Habib, Medhat Ahmed Nemitallah
  • Publication number: 20150267611
    Abstract: Experimental and numerical investigations on an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor are conducted. The combustor is fuelled with CH4CH4 and a mixture of CO2 and O2 as oxidizer. The stability of the oxy-combustion flame is affected when the operating percentage of oxygen in the oxidizer mixture is reduced below 25%. A new 3D reactor design is introduced for the substitution of ITM reactors into a gas turbine combustor. A new oxygen permeation equation model has been developed by fitting the experimental data available in the literature for a LSCF ion transport membrane. The monolith structure design ITM reactor is capable of delivering power ranging from 5 to 8 MWe based on cycle first law efficiency.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 24, 2015
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Publication number: 20150260105
    Abstract: A zero-emission, closed-loop and hybrid solar-produced syngas power cycle is introduced utilizing an oxygen transport reactor (OTR). The fuel is syngas produced within the cycle. The separated oxygen inside the OTR through the ion transport membrane (ITM) is used in the syngas-oxygen combustion process in the permeate side of the OTR. The combustion products in the permeate side of the OTR are CO2 and H2O. The combustion gases are used in a turbine for power production and energy utilization then a condenser is used to separate H2O from CO2. CO2 is compressed to the feed side of the OTR. H2O is evaporated after separation from CO2 and fed to the feed side of the OTR.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 17, 2015
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Medhat Ahmed NEMITALLAH, Mohamed Abdel-Aziz Habib
  • Patent number: 9074559
    Abstract: The engine emissions control system using an ion transport membrane incorporates an ion transport membrane unit into a closed, recirculating intake and exhaust system in the engine. The unit has a housing defining an air intake channel separated from an exhaust gas recirculation channel by an ion transport membrane. The membrane is permeable to oxygen, but is impermeable to nitrogen, water and carbon dioxide. Oxygen drawn from ambient air in the air intake channel is transported through the membrane to enrich the flow of exhaust gases in the exhaust gas recirculation channel, which is transported through a conduit to the engine intake for combustion of hydrocarbon fuel. The oxygenated exhaust gases may include uncombusted fuel or incomplete combustion products. Exhaust and intake accumulators may smooth the gas pulses. The accumulated or excess carbon dioxide and water in the exhaust is recovered from the system into onboard storage tanks or containers.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: July 7, 2015
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Medhat Ahmed Nemitallah, Mohamed Abdel-Aziz Habib
  • Publication number: 20150176487
    Abstract: An oxygen transport reactor for boiler furnaces and gas turbine combustors that utilizes a liquid fuel that is oxidized as a gaseous fuel in a membrane reactor. A liquid fuel is introduced by vaporizing the fuel inside a porous pipe surrounded by an annulus reaction zone which is surrounded by an annulus air zone. An oxygen transport membrane separates the annulus reaction zone containing the porous vaporized fuel and sweeping CO2 from the air feed side zone. Oxygen is transported from the outer annulus through the membrane to the annulus reaction zone containing the vaporized fuel and sweeping CO2. Fuel is first cracked to very small droplets in the intake fuel atomizer utilizing part of the intake CO2 then completely vaporized inside the porous pipe utilizing the heat coming from the surrounding reaction zone. The oxygen transport reactor is applicable for carbon free boiler furnaces and gas turbine combustors which utilize oxygen transport reactors for combined oxygen separation and combustion.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Mohamed Abdel-Aziz HABIB, Medhat Ahmed Nemitallah
  • Publication number: 20150121849
    Abstract: The engine emissions control system using an ion transport membrane incorporates an ion transport membrane unit into a closed, recirculating intake and exhaust system in the engine. The unit has a housing defining an air intake channel separated from an exhaust gas recirculation channel by an ion transport membrane. The membrane is permeable to oxygen, but is impermeable to nitrogen, water and carbon dioxide. Oxygen drawn from ambient air in the air intake channel is transported through the membrane to enrich the flow of exhaust gases in the exhaust gas recirculation channel, which is transported through a conduit to the engine intake for combustion of hydrocarbon fuel. The oxygenated exhaust gases may include uncombusted fuel or incomplete combustion products. Exhaust and intake accumulators may smooth the gas pulses. The accumulated or excess carbon dioxide and water in the exhaust is recovered from the system into onboard storage tanks or containers.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: MEDHAT AHMED NEMITALLAH, MOHAMED ABDEL-AZIZ HABIB
  • Publication number: 20140174329
    Abstract: The controlled temperature ion transport membrane reactor is a combustion-type ion transport membrane reactor for combusting a hydrocarbon fuel with oxygen. The reactor includes an oxygen permeable ion transport membrane for separating oxygen from air. In order to control temperature within the reactor, a thermally conductive plate is positioned between a mixing passage, where a diluent gas and the permeated oxygen are mixed, and a reaction zone. The reaction zone is in fluid communication with the mixing passage and a fuel chamber through a porous plate for combusting the hydrocarbon fuel with the oxygen.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: MEDHAT AHMED NEMITALLAH, MOHAMED ABDEL-AZIZ HABIB, RACHED BEN-MANSOUR