Patents by Inventor Medtronic MiniMed, Inc.

Medtronic MiniMed, Inc. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130331673
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: February 27, 2013
    Publication date: December 12, 2013
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130331672
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Application
    Filed: February 27, 2013
    Publication date: December 12, 2013
    Inventor: Medtronic Minimed, Inc.
  • Publication number: 20130324940
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 5, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130324941
    Abstract: An infusion system for infusing a liquid into a body includes an external infusion device and a remote commander. The external infusion device includes a housing, a receiver, a processor and an indication device. The receiver is coupled to the housing and for receiving remotely generated commands. The processor is coupled to the housing and the receiver to receive remotely generated commands and to control the external infusion device in accordance with the commands. The indication device indicates when a command has been received and indicates when the command is being utilized to control the external infusion device so that the external infusion device is capable of being concealed from view when being remotely commanded. The remote commander includes a commander housing, a keypad for transmitting commands, and a transmitter for transmitting commands to the receiver of the external infusion device.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 5, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Medtronic MiniMed, Inc.
  • Publication number: 20130190683
    Abstract: A medical device includes a first housing portion (FHP) and a second housing portion (SHP) configured to be to be movable relative to each other from a first position to operatively engage at a second position to couple at least one of a drive device and a needle-inserting device supported by one of the FHP and the SHP to a reservoir supported by the other of the FHP and the SHP. Electronic circuitry configured to detect at least one of a first magnetic interaction between a magnet and at least one of a first magnetically attractive material and a first magnet-responsive device and a second magnetic interaction between the magnet and at least one of a second magnetically attractive material and a second magnet-responsive device, and to provide a signal or a change in state in response to detecting at least one of the interactions.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130186474
    Abstract: Various embodiments of the present invention are directed to equalizing pressure in a reservoir containing fluidic media, possibly due to imperfect installation of the reservoir or an external influence such as an altitude or a temperature change. In various embodiments, fluidic media may be expelled from the reservoir through a needle and contained in an interior volume of a pierceable member before the needle pierces the pierceable member to establish a flow path to a user. In other embodiments, fluidic media may be expelled through a port of the reservoir into a chamber. In further embodiments, fluidic media may be expelled through a channel in a plunger head and out a passage in the reservoir when the channel and passage are aligned. In other embodiments, fluidic media may be expelled through a valve, and the valve may be pierceable by a needle to establish a flow path to the user.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 25, 2013
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Medtronic MiniMed, Inc.
  • Publication number: 20130186895
    Abstract: Various embodiments of the present invention are directed to equalizing pressure in a reservoir containing fluidic media, possibly due to imperfect installation of the reservoir or an external influence such as an altitude or a temperature change. In various embodiments, fluidic media may be expelled from the reservoir through a needle and contained in an interior volume of a pierceable member before the needle pierces the pierceable member to establish a flow path to a user. In other embodiments, fluidic media may be expelled through a port of the reservoir into a chamber. In further embodiments, fluidic media may be expelled through a channel in a plunger head and out a passage in the reservoir when the channel and passage are aligned. In other embodiments, fluidic media may be expelled through a valve, and the valve may be pierceable by a needle to establish a flow path to the user.
    Type: Application
    Filed: January 3, 2013
    Publication date: July 25, 2013
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Medtronic MiniMed, Inc.
  • Publication number: 20130190583
    Abstract: Subject matter disclosed herein relates to a method and/or system for tailoring insulin therapies to physiological characteristics of a patient. In particular, observations of a blood glucose concentration of a patient responsive to a meal profile and an insulin profile may be used for estimating one or more physiological parameters.
    Type: Application
    Filed: December 14, 2012
    Publication date: July 25, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130158503
    Abstract: An infusion system, which may be a closed loop, or “semi-closed-loop”, infusion system, uses state variable feedback to control the rate at which fluid is infused into a user's body. The closed loop system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user and produces a sensor signal which is representative of the user's condition. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, e.g., subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused with a bolus and to be removed from the basal delivery of the fluid.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 20, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130158473
    Abstract: An infusion system, which may be a closed loop infusion system or “semi-closed-loop” system, uses state variable feedback to control the rate that fluid is infused into the body of a user. The closed loop infusion system includes a sensor system, a controller, and a delivery system. The “semi-closed-loop” system further includes prompts that are displayed or sounded or otherwise provide indications to the user prior to fluid delivery. The sensor system includes a sensor for monitoring a condition of the user. The sensor produces a sensor signal, which is representative of the condition of the user. The delivery system infuses a fluid into the user at a rate dictated by the commands from the controller. The system may use three state variables, subcutaneous insulin concentration, plasma insulin concentration, and insulin effect, and corresponding gains, to calculate an additional amount of fluid to be infused as a bolus and to be removed from the basal delivery of the fluid.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 20, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130133438
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, a force sensor, and an electronics module. The drive motor assembly regulates delivery of fluid by actuating a piston of a fluid reservoir, and the force sensor generates output levels in response to force imparted thereto during, for example, fluid delivery operations. The electronics module processes the output levels of the force sensor to assess the operating health of the force sensor, to check for occlusions in the fluid delivery path, and to monitor the seating status of the fluid reservoir.
    Type: Application
    Filed: January 30, 2013
    Publication date: May 30, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Medtronic Minimed, Inc.
  • Publication number: 20130133427
    Abstract: A portable medical device is provided with an internal accelerometer device. The medical device includes a circuit board, the accelerometer device, and a response module coupled to the accelerometer device. The accelerometer device is mechanically and electrically coupled to the circuit board, and it includes a plurality of mass-supporting arms for a plurality of electrically distinct sensor electrodes, piezoelectric material for the mass-supporting arm, and a proof mass supported by the mass-supporting arms. Each of the mass-supporting arms has one of the sensor electrodes located thereon. Acceleration of the proof mass causes deflection of the piezoelectric material, which generates respective sensor signals at one or more of the sensor electrodes. The response module is configured to initiate an acceleration-dependent operation of the portable medical device in response to generated sensor signals present at the sensor electrodes.
    Type: Application
    Filed: January 25, 2013
    Publication date: May 30, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Medtronic Minimed, Inc.
  • Publication number: 20130130395
    Abstract: Medical devices are typically sterilized in processes used to manufacture such products and their sterilization by exposure to radiation is a common practice. Radiation has a number of advantages over other sterilization processes including a high penetrating ability, relatively low chemical reactivity, and instantaneous effects without the need to control temperature, pressure, vacuum, or humidity. Unfortunately, radiation sterilization can compromise the function of certain components of medical devices. For example, radiation sterilization can lead to loss of protein activity and/or lead to bleaching of various dye compounds. Embodiments of the invention provide methods and materials that can be used to protect medical devices from unwanted effects of radiation sterilization.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 23, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130116632
    Abstract: A sealing assembly for a fluid infusion device includes a base plate, a reservoir port receptacle, a flow base component, and a needle sealing element. The receptacle receives the reservoir port, and has proximal and distal ends, and a needle entry in the distal end to receive a hollow needle of a fluid reservoir. The flow base component has an inlet structure defining a fluid chamber, and a needle guide pin protruding therefrom. The end of the guide pin fits within the hollow needle. The needle sealing element has a proximal flange adjacent to the inlet structure, a distal flange opposite the proximal flange, a neck section between the flanges, and a needle opening extending through the neck section. The needle sealing element is positioned within the port receptacle such that the neck section surrounds the end section of the needle guide pin.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 9, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Medtronic Minimed, Inc.
  • Publication number: 20130102867
    Abstract: Disclosed are methods, apparatuses, etc. for determination and application of a metric for assessing a patient's glycemic health. In one particular implementation, a computed metric may be used to balance short-term and long-term risks associated with a particular therapy.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130102866
    Abstract: Subject matter disclosed herein relates to monitoring and/or controlling levels of an analyte in bodily fluid. In particular, estimation of a concentration of the analyte in a first physiological compartment based upon observations of a concentration of the analyte in a second physiological compartment may account for a latency in transporting the analyte between the first and second physiological compartments.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130090625
    Abstract: A medical device system includes at least one controllable patient-worn or patient-carried medical device, and a plurality of controller devices that are capable of independently controlling features or functions of the patient medical device. Control commands and other data is wirelessly communicated among the patient medical device and the multiple controller devices. A number of techniques, protocols, and other measures are provided to coordinate wireless communication between the various devices in a medical device system. These control command coordination processes address situations where conflicting, redundant, or concurrent control commands might be independently issued by the multiple controller devices.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130079608
    Abstract: Systems and methods for non-vascular sensor implantation and for measuring physiological parameters in areas of a body where the physiological parameters are heterogeneous. An implant unit is implanted in an area of a body and a foreign body capsule is allowed to form around the implant unit area. A sensor may be directed into a body cavity such as, for example, the peritoneal space, subcutaneous tissues, the foreign body capsule, or other area. A subcutaneous area of the body may be tunneled for sensor placement. Spatially separated sensing elements may be used for detecting individual amounts of the physiological parameter. An overall amount of the physiological parameter may be determined by calculating a statistical measurement of the individual sensed amounts in the area. Another embodiment of the invention, a multi-analyte measuring device, may include a substrate having an electrode array on one side and an integrated circuit on another side.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 28, 2013
    Applicant: Medtronic MiniMed, Inc.
    Inventor: Medtronic MiniMed, Inc.
  • Publication number: 20130066281
    Abstract: A fluid infusion device that delivers medication fluid to a user includes a removable fluid reservoir having a reservoir port and a hollow fluid reservoir needle, a base plate having a reservoir port receptacle for the reservoir port and the reservoir needle, and an inlet structure in the reservoir port receptacle to define at least a portion of a fluid chamber. The fluid infusion device also includes a needle sealing element having a base section, an end section opposite the base section, a neck section between the base section and the end section, and a needle opening extending through the base section, the neck section, and the end section. A compression element is coupled around the neck section to impart an inward biasing force near the needle opening.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.
  • Publication number: 20130046253
    Abstract: Disclosed herein is a fluid infusion device of the type that delivers medication fluid to the body of a patient. The device includes or cooperates with a fluid reservoir, and the device has a sealing assembly to receive and form a fluid seal with the fluid reservoir. A retractable sealing element surrounding a hollow fluid delivery needle may be used to seal a port of the fluid reservoir. The port may include a pressure vent that is sealed by the retractable sealing element. In one variation, the reservoir includes a moving valve sleeve that holds a septum. The septum moves to allow the reservoir to vent, and to form a seal with the port when the needle pierces the septum. In another variation, the device includes a needleless sealing assembly. In yet other variations, the device uses a needled fluid reservoir.
    Type: Application
    Filed: October 22, 2012
    Publication date: February 21, 2013
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: MEDTRONIC MINIMED, INC.