Patents by Inventor Meghan Ann Tucker

Meghan Ann Tucker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210349095
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g., an lung cancer).
    Type: Application
    Filed: July 16, 2021
    Publication date: November 11, 2021
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Beaudet
  • Patent number: 11099188
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g., an lung cancer).
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 24, 2021
    Assignee: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Beaudet
  • Publication number: 20190128889
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g.
    Type: Application
    Filed: May 31, 2018
    Publication date: May 2, 2019
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Reeves
  • Publication number: 20170071941
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: November 30, 2016
    Publication date: March 16, 2017
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Patent number: 9539254
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: January 10, 2017
    Assignee: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Patent number: 9364477
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 14, 2016
    Assignee: Cell Signaling Technology, Inc.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Publication number: 20150119403
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: September 11, 2014
    Publication date: April 30, 2015
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Publication number: 20120208824
    Abstract: The invention provides the identification of the presence of polypeptides with ROS kinase activity in mammalian lung cancer. In some embodiments, the polypeptide with ROS kinase activity is the result of a fusion between a ROS-encoding polynucleotide and a polynucleotide encoding a second (non-ROS) polypeptide. Three different fusion partners of ROS are described, namely proteins encoded by the FIG gene, the SLC34A2 gene, and the CD74 gene. The invention enables new methods for determining the presence of a polypeptide with ROS kinase activity in a biological sample, methods for screening for compounds that inhibit the proteins, and methods for inhibiting the progression of a cancer (e.g., an lung cancer).
    Type: Application
    Filed: May 23, 2011
    Publication date: August 16, 2012
    Applicant: Cell Signaling Technology, Inc.
    Inventors: Victoria McGuinness Rimkunas, Herbert Haack, Ting-Lei Gu, Ailan Guo, Anthony Paul Possemato, Katherine Eleanor Crosby, Meghan Ann Tucker, Cynthia Reeves
  • Publication number: 20110287445
    Abstract: The invention provides the identification of the presence of mutant ROS protein in human cancer. In some embodiments, the mutant ROS are FIG-ROS fusion proteins comprising part of the FIG protein fused to the kinase domain of the ROS kinase. In some embodiments, the mutant ROS is the overexpression of wild-type ROS in cancerous tissues (or tissues suspected of being cancerous) where, in normal tissue of that same tissue type, ROS is not expressed or is expressed at lower levels. The mutant ROS proteins of the invention are anticipated to drive the proliferation and survival of a subgroup of human cancers, particularly in cancers of the liver (including bile duct), pancreas, kidney, and testes. The invention therefore provides, in part, isolated polynucleotides and vectors encoding the disclosed mutant ROS polypeptides (e.g., a FIG-ROS(S) fusion polypeptide), probes for detecting it, isolated mutant polypeptides, recombinant polypeptides, and reagents for detecting the fusion and truncated polypeptides.
    Type: Application
    Filed: February 12, 2010
    Publication date: November 24, 2011
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ting-Lei Gu, Meghan Ann Tucker, Herbert Haack, Katherine Eleanor Crosby, Victoria McGuinness Rimkunas
  • Publication number: 20110045603
    Abstract: The invention discloses 990 novel phosphorylation sites identified in carcinoma and leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: April 20, 2010
    Publication date: February 24, 2011
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Ailan Guo, Albrecht Moritz, Anthony Possemato, Ting-Lei Gu, Jian Yu, Charles Lawrence Farnsworth, Corinne Michaud, Hong Ren, Jessica Ann Cherry, Jing Zhou, Valerie Lee Goss, Erik Spek, Yu Li, Meghan Ann Tucker, John Edward Rush, II, Matthew Stokes, Klarisa Rikova