Patents by Inventor Megumi Nakanishi

Megumi Nakanishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240099155
    Abstract: A memory includes: a magnet including a first and second portions adjacent in a first direction. The first portion has a first dimension in a second direction at a first position at which a dimension of the magnet in the second direction is maximum, the second direction perpendicular to the first direction, the second portion has a second dimension in the second direction at a second position at which a dimension of the magnet in the second direction is minimum, the second dimension smaller than the first dimension, the first portion is continuous to the second portion via a third position between the first and second positions, a curve corresponding to an outer of the magnet extends between the first and third positions, and the curve passes through a side closer to the central axis of the magnet than a straight line connecting the first and second positions.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 21, 2024
    Applicant: Kioxia Corporation
    Inventors: Masahiro KOIKE, Michael Arnaud QUINSAT, Nobuyuki UMETSU, Tsutomu NAKANISHI, Agung SETIADI, Megumi YAKABE, Shigeyuki HIRAYAMA, Masaki KADO, Yasuaki OOTERA, Shiho NAKAMURA, Susumu HASHIMOTO, Tsuyoshi KONDO
  • Publication number: 20220160946
    Abstract: The present invention aims to provide a material for adsorbing soluble tumor necrosis factor receptors with high efficiency. The present invention provides an adsorbing material for soluble tumor necrosis factor receptors, which includes a superficially porous water-insoluble polymeric material, wherein the pore size distribution curve for the surface of the water-insoluble polymeric material, which is derived from a distribution of melting points determined by differential scanning calorimeter, shows the peak radius in the range of 1 to 80 nm, and the water-insoluble polymeric material has a zeta potential at pH 7.4 of ?15 to 15 mV, and the water-insoluble polymeric material is in fiber, particle, or film form.
    Type: Application
    Filed: April 21, 2020
    Publication date: May 26, 2022
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Kaoru SHIMADA, Megumi NAKANISHI, Hiroshi TAKAHASHI
  • Patent number: 10940229
    Abstract: A material for adhesion prevention can be adhered to biological tissue with certainty and has improved tissue adhesiveness and biodegradability. Such material for adhesion prevention is composed of: a 1- to 1,000-?m-thick water-soluble support layer comprising a water-soluble polymer; and a 1- to 1,000-?m-thick adhesion prevention layer comprising a biodegradable polymer. The biodegradable polymer has a structure in which a branched polyalkylene glycol comprising 3 to 8 terminal hydroxyl groups per molecule is bound to a polyhydroxy alkanoic acid, and a mass ratio of the branched polyalkylene glycol relative to the total mass is 1% to 30%.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 9, 2021
    Assignees: Toray Industries, Inc., Nanotheta Co., Ltd.
    Inventors: Akihiro Saito, Megumi Nakanishi, Kazuhiro Tanahashi, Toru Arakane, Motonori Hochi, Ai Suzuki, Koji Okabayashi, Shinji Takeoka, Toshinori Fujie, Yuya Ishiduka, Shinya Ohtsubo
  • Publication number: 20190216971
    Abstract: A material for adhesion prevention can be adhered to biological tissue with certainty and has improved tissue adhesiveness and biodegradability. Such material for adhesion prevention is composed of: a 1- to 1,000-?m-thick water-soluble support layer comprising a water-soluble polymer; and a 1- to 1,000-?m-thick adhesion prevention layer comprising a biodegradable polymer. The biodegradable polymer has a structure in which a branched polyalkylene glycol comprising 3 to 8 terminal hydroxyl groups per molecule is bound to a polyhydroxy alkanoic acid, and a mass ratio of the branched polyalkylene glycol relative to the total mass is 1% to 30%.
    Type: Application
    Filed: September 29, 2017
    Publication date: July 18, 2019
    Inventors: Akihiro Saito, Megumi Nakanishi, Kazuhiro Tanahashi, Toru Arakane, Motonori Hochi, Ai Suzuki, Koji Okabayashi, Shinji Takeoka, Toshinori Fujie, Yuya Ishizuka, Shinya Ohtsubo
  • Publication number: 20180140752
    Abstract: An antithrombogenic material includes a coating material containing: a cationic polymer containing, as a constituent monomer, a compound selected from the group consisting of alkyleneimines, vinylamines, allylamines, lysine, protamine, and diallyldimethylammonium chloride; and an anionic compound containing a sulfur atom and having anticoagulant activity; and a base material whose surface is coated with the coating material; wherein the cationic polymer is covalently bound to the base material; the anionic compound containing a sulfur atom and having anticoagulant activity is immobilized on the surface of the base material by ionic bonding to the cationic polymer; and the average thickness of the coating material is 15 to 400 nm.
    Type: Application
    Filed: May 27, 2016
    Publication date: May 24, 2018
    Inventors: Koji Kadowaki, Akihiro Saito, Megumi Nakanishi, Masaki Fujita, Kazuhiro Tanahashi
  • Patent number: 9504768
    Abstract: A biodegradable material has an improved biodegradability, an enhanced shape recovery rate after deformation of the material and an improved flexibility. The biodegradable material is a chemically cross-linked product of: a multivalent compound A having 3 or more functional groups X such as hydroxyl group; a multivalent compound B having 3 or more functional groups Y such as carboxyl group; and a compound C having a structure originated from a hydroxycarboxylic acid whose homopolymer formed by homopolymerization has a glass transition point of ?40° C. or lower.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 29, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Masaki Fujita, Megumi Nakanishi, Kazuhiro Tanahashi
  • Patent number: 9408948
    Abstract: Biodegradable particles for medical use and a vascular embolization material have improved flexibility, cause less aggregation among particles, and have improved particle shape-recovering ability after passing through a catheter or the like. The biodegradable particles for medical use are composed of an A1-B-A2 type triblock copolymer, wherein A1 and A2 are each a block of biodegradable copolymer constituted of monomers including glycolic acid, lactic acid and 6-hydroxycaproic acid, and B is a block of water-soluble polymer.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: August 9, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Yasufumi Yamamura, Kazuhiro Tanahashi, Megumi Nakanishi, Masaki Fujita
  • Patent number: 9393340
    Abstract: A biodegradable material is a chemically cross-linked product between a multivalent compound A having 3 or more functional groups X such as hydroxyl group; and a multivalent compound B having 3 or more functional groups Y such as carboxyl group wherein chemical cross-linkage(s) is/are formed by condensation reaction of the functional group(s) X and the functional group(s) Y; wherein (y+z)/(x+z) is 1.2 to 4.0 when MA>MB, and (x+z)/(y+z) is 1.2 to 4.0 when MA<MB; wherein x represents the number of the functional group(s) X not condensed with the functional group(s) Y; y represents the number of the functional group(s) Y not condensed with the functional group(s) X; z represents the number of the cross-linkage(s); MA represents weight average molecular weight of the multivalent compound A; and MB represents weight average molecular weight of the multivalent compound B.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: July 19, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Masaki Fujita, Megumi Nakanishi, Kazuhiro Tanahashi
  • Patent number: 9353217
    Abstract: Spherical biodegradable particles have improved flexibility, cause less aggregation among particles, and have improved particle shape-recovering ability after passing through a catheter or the like. The biodegradable particles include a synthetic polymer chemically cross-linked to a polyvalent carboxylic acid, the biodegradable particles having a water content of 20 to 90% in a water-saturated state.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: May 31, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Kazuhiro Tanahashi, Megumi Nakanishi, Yasufumi Yamamura, Masaki Fujita
  • Patent number: 9226997
    Abstract: The present invention aims to provide a biodegradable particle capable of being molded without an aggregation or cohesion of the particles, capable of being carried or injected without clogging by an aggregation in a micro diameter tube such as of a catheter, needle or syringe mainly used in pharmaceutical and medical applications of which inner diameter is smaller than the particle size or in a blood vessel and capable of being smoothly degraded in a specified period of time so that degraded component can finally be absorbed or discharged in vitro. As means for solving the problem, the present invention provides a biodegradable particle characterized in that a compressive modulus of the particle in water saturated state is 10 MPa or less.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: January 5, 2016
    Assignee: Toray Industries, Inc.
    Inventors: Kazuhiro Tanahashi, Megumi Nakanishi
  • Publication number: 20150051355
    Abstract: A biodegradable material has an improved biodegradability, an enhanced shape recovery rate after deformation of the material and an improved flexibility. The biodegradable material is a chemically cross-linked product of: a multivalent compound A having 3 or more functional groups X such as hydroxyl group; a multivalent compound B having 3 or more functional groups Y such as carboxyl group; and a compound C having a structure originated from a hydroxycarboxylic acid whose homopolymer formed by homopolymerization has a glass transition point of ?40° C. or lower.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 19, 2015
    Inventors: Masaki Fujita, Megumi Nakanishi, Kazuhiro Tanahashi
  • Publication number: 20150045518
    Abstract: A biodegradable material is a chemically cross-linked product between a multivalent compound A having 3 or more functional groups X such as hydroxyl group; and a multivalent compound B having 3 or more functional groups Y such as carboxyl group wherein chemical cross-linkage(s) is/are formed by condensation reaction of the functional group(s) X and the functional group(s) Y; wherein (y+z)/(x+z) is 1.2 to 4.0 when MA>MB, and (x+z)/(y+z) is 1.2 to 4.0 when MA<MB; wherein x represents the number of the functional group(s) X not condensed with the functional group(s) Y; y represents the number of the functional group(s) Y not condensed with the functional group(s) X; z represents the number of the cross-linkage(s); MA represents weight average molecular weight of the multivalent compound A; and MB represents weight average molecular weight of the multivalent compound B.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 12, 2015
    Inventors: Masaki Fujita, Megumi Nakanishi, Kazuhiro Tanahashi
  • Patent number: 8871873
    Abstract: A biodegradable particle including a block copolymer produced by copolymerization of a biodegradable copolymer having a structure composed of hydroxycarboxylic acid a1, whose homopolymer produced by homopolymerization has a glass transition point of not less than 40° C., and hydroxycarboxylic acid a2, whose homopolymer produced by homopolymerization has a glass transition point of not more than ?40° C.; a water-soluble polymer comprising a functional group selected from the group consisting of a hydroxyl group, amino group and carboxylic acid group at each of both ends; and a polyvalent compound comprising 2 or more functional groups each selected from the group consisting of a hydroxyl group, amino group and carboxylic acid group; wherein a ratio of mass of said structure composed of hydroxycarboxylic acid a2 to mass of said biodegradable copolymer is 30 to 90% by mass.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Toray Industries, Inc.
    Inventors: Masaki Fujita, Megumi Nakanishi, Yoshitake Takahashi, Yasufumi Yamamura, Kazuhiro Tanahashi
  • Publication number: 20140018505
    Abstract: A biodegradable particle including a block copolymer produced by copolymerization of a biodegradable copolymer having a structure composed of hydroxycarboxylic acid a1, whose homopolymer produced by homopolymerization has a glass transition point of not less than 40° C. and hydroxycarboxylic acid a2, whose homopolymer produced by homopolymerization has a glass transition point of not more than ?40° C.; a water-soluble polymer comprising a functional group selected from the group consisting of a hydroxyl group, amino group and carboxylic acid group at each of both ends; and a polyvalent compound comprising 2 or more functional groups each selected from the group consisting of a hydroxyl group, amino group and carboxylic acid group; wherein a ratio of mass of said structure composed of hydroxycarboxylic acid a2 to mass of said biodegradable copolymer is 30 to 90% by mass.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 16, 2014
    Applicant: Toray Industries, Inc.
    Inventors: Masaki Fujita, Megumi Nakanishi, Yoshitake Takahashi, Yasufumi Yamamura, Kazuhiro Tanahashi
  • Publication number: 20130273372
    Abstract: Biodegradable particles for medical use and a vascular embolization material have improved flexibility, cause less aggregation among particles, and have improved particle shape-recovering ability after passing through a catheter or the like. The biodegradable particles for medical use are composed of an A1-B-A2 type triblock copolymer, wherein A1 and A2 are each a block of biodegradable copolymer constituted of monomers including glycolic acid, lactic acid and 6-hydroxycaproic acid, and B is a block of water-soluble polymer.
    Type: Application
    Filed: December 19, 2011
    Publication date: October 17, 2013
    Applicant: Toray Industries, Inc.
    Inventors: Yasufumi Yamamura, Kazuhiro Tanahashi, Megumi Nakanishi, Masaki Fujita
  • Publication number: 20130253136
    Abstract: Spherical biodegradable particles have improved flexibility, cause less aggregation among particles, and have improved particle shape-recovering ability after passing through a catheter or the like. The biodegradable particles include a synthetic polymer chemically cross-linked to a polyvalent carboxylic acid, the biodegradable particles having a water content of 20 to 90% in a water-saturated state.
    Type: Application
    Filed: December 9, 2011
    Publication date: September 26, 2013
    Applicant: TORAY Industries ,Inc.
    Inventors: Kazuhiro Tanahashi, Megumi Nakanishi, Yasufumi Yamamura, Masaki Fujita
  • Publication number: 20120156302
    Abstract: The present invention aims to provide a biodegradable particle capable of being molded without an aggregation or cohesion of the particles, capable of being carried or injected without clogging by an aggregation in a micro diameter tube such as of a catheter, needle or syringe mainly used in pharmaceutical and medical applications of which inner diameter is smaller than the particle size or in a blood vessel and capable of being smoothly degraded in a specified period of time so that degraded component can finally be absorbed or discharged in vitro. As means for solving the problem, the present invention provides a biodegradable particle characterized in that a compressive modulus of the particle in water saturated state is 10 MPa or less.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 21, 2012
    Inventors: Kazuhiro TANAHASHI, Megumi Nakanishi
  • Publication number: 20090311337
    Abstract: The present invention aims to provide a biodegradable particle capable of being molded without an aggregation or cohesion of the particles, capable of being carried or injected without clogging by an aggregation in a micro diameter tube such as of a catheter, needle or syringe mainly used in pharmaceutical and medical applications of which inner diameter is smaller than the particle size or in a blood vessel and capable of being smoothly degraded in a specified period of time so that degraded component can finally be absorbed or discharged in vitro. As means for solving the problem, the present invention provides a biodegradable particle characterized in that a compressive modulus of the particle in water saturated state is 10 MPa or less.
    Type: Application
    Filed: October 26, 2006
    Publication date: December 17, 2009
    Inventors: Kazuhiro Tanahashi, Megumi Nakanishi
  • Publication number: 20060069168
    Abstract: This invention provides an embolization material used for blocking a blood vessel in vivo for stopping the blood flow. The most suitable embolization material has a water swelling ratio of 30% or more, is degradable in a phosphate buffered saline, is formed as virtually spherical particles, and is preferably composed of a water insoluble poly(ethylene glycol) copolymer, wherein when the film formed from said polymer is saturated with water, it has an elastic modulus in tension of 1500 MPa or less. The embolization material of this invention can reliably block a blood vessel at an intended site without causing cohesion or clogging in a catheter or in the blood vessel at other than the intended site. Thereafter, the blocked site concerned can be liberated from the embolized state by degradation, and the degraded components can be metabolized or excreted outside the body.
    Type: Application
    Filed: October 28, 2003
    Publication date: March 30, 2006
    Inventors: Norikazu Tabata, Kazuhiro Tanahashi, Megumi Nakanishi