Patents by Inventor Meha Rungta

Meha Rungta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230021410
    Abstract: Catalyst compositions to perform selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatic hydrocarbon may exhibit a hydrogen chemisorption of at least 15% and comprise an oxide support material selected from the group consisting of an alkaline earth metal oxide, silica, a composite of an alkaline earth metal oxide and Al2O3, a composite of ZnO and Al2O3, a lanthanide oxide, a composite of a lanthanide oxide and Al2O3, and combinations and mixtures of two or more thereof; and a transition metal element dispersed upon the oxide support material. Alkyl-demethylation processes of a C6+ aromatic hydrocarbon-containing stream comprising C2+-hydrocarbyl-substituted aromatic hydrocarbons may comprise contacting the catalyst compositions in an alkyl-demethylation zone under alkyl-demethylation conditions to form an alkyl-demethylated aromatic hydrocarbon as an effluent exiting the alkyl-demethylation zone.
    Type: Application
    Filed: November 16, 2020
    Publication date: January 26, 2023
    Inventors: Umar Aslam, Meha Rungta, Chuansheng Bai, Ali A. Kheir, Paul Podsiadlo
  • Publication number: 20230023923
    Abstract: Disclosed are catalyst compositions comprising two or more metal elements with high performances for selective alkyl-demethylation of C2+-hydrocarbyl-substituted aromatics, processes for making such catalyst compositions, and alkyl-demethylation processes using same. Also disclosed are preferred processes for making alkyl-demethylation catalyst compositions including a high-temperature calcination step, and preferred alkyl-demethylation processes having a high H2/HC molar ratio.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 26, 2023
    Inventors: Chuansheng Bai, Ali A. Kheir, Eric D. Metzger, Christian A. Diaz Urrutia, Meha Rungta, Umar Aslam
  • Publication number: 20210387928
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Michel Molinier, Hari Nair, Meha Rungta, Michael Salciccioli, Doron Levin, Scott J. Weigel
  • Patent number: 11198659
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Hari Nair, Meha Rungta, Michel Molinier, Doron Levin, Scott J. Weigel, Michael Salciccioli, John F. Brody
  • Patent number: 10975005
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: April 13, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Meha Rungta, Michel Molinier, Hari Nair, Doron Levin, Scott J. Weigel, Michael Salciccioli
  • Patent number: 10906851
    Abstract: Para-xylene is separated from a mixture of xylenes and ethylbenzene by a separation process. An ortho-selective adsorbent is used to reduce the ortho-xylene concentration of the xylenes, prior to contact of the xylenes and ethylbenzene with a para-selective adsorbent. The stream rich in ortho-xylene may be isomerized in the liquid phase to increase the amount of para-xylene therein. The para-xylene-depleted stream may be treated in the vapor phase to remove the ethylbenzene and then subjected to isomerization in the liquid phase to produce a stream having a higher than equilibrium amount of para-xylene.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 2, 2021
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., GEORGIA TECH RESEARCH CORPORATTON
    Inventors: Meha Rungta, Robert G. Tinger, Jeevan S. Abichandani, Dana L. Pilliod, John R. Porter, Anthony Go, Sankar Nair, Ke Zhang
  • Publication number: 20210017102
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: January 21, 2021
    Inventors: Hari Nair, Meha Rungta, Michel Molinier, Doron Levin, Scott J. Weigel, Michael Salciccioli, John F. Brody
  • Publication number: 20210017103
    Abstract: Alkyl-demethylation of C2+-hydrocarbyl substituted aromatic hydrocarbons can be utilized to treat one or more of a heavy naphtha reformate stream, a hydrotreated SCN stream, a C8 aromatic hydrocarbon isomerization feed stream, a C9+ aromatic hydrocarbon transalkylation feed stream, and similar hydrocarbon streams to produce additional quantity of xylene products.
    Type: Application
    Filed: June 16, 2020
    Publication date: January 21, 2021
    Inventors: Meha Rungta, Michel Molinier, Hari Nair, Doron Levin, Scott J. Weigel, Michael Salciccioli
  • Publication number: 20200181042
    Abstract: Para-xylene is separated from a mixture of xylenes and ethylbenzene by a separation process. An ortho-selective adsorbent is used to reduce the ortho-xylene concentration of the xylenes, prior to contact of the xylenes and ethylbenzene with a para-selective adsorbent. The stream rich in ortho-xylene may be isomerized in the liquid phase to increase the amount of para-xylene therein. The para-xylene-depleted stream may be treated in the vapor phase to remove the ethylbenzene and then subjected to isomerization in the liquid phase to produce a stream having a higher than equilibrium amount of para-xylene.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 11, 2020
    Inventors: Meha RUNGTA, Robert G. TINGER, Jeevan S. ABICHANDANI, Dana L. PILLIOD, John R. PORTER, Anthony GO, Sankar NAIR, Ke ZHANG
  • Patent number: 10358401
    Abstract: Para-xylene is separated from a mixture of C8 aromatics using a simulated moving bed (SMB) adsorption process, wherein a MOF is used as an adsorbent and an alkane or alkene having 7 or less carbon atoms, such as hexane or heptane is used as desorbent. Because of the difference in boiling points of a hexane or heptane desorbent as compared to conventional desorbents such as toluene or para-diethylbenzene, less energy is required to separate hexane or heptane from C8 aromatics by distillation than the energy required to separate toluene or diethylbenzene from C8 aromatics by distillation.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: July 23, 2019
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., GEORGIA TECH RESEARCH CORPORATION
    Inventors: Meha Rungta, Jeevan S. Abichandani, Dana L. Pilliod, Robert G. Tinger, Anthony Go, Ke Zhang, Sankar Nair, Jason Gee, David Sholl
  • Publication number: 20180215684
    Abstract: Para-xylene is separated from a mixture of C8 aromatics using a simulated moving bed (SMB) adsorption process, wherein a MOF is used as an adsorbent and an alkane or alkene having 7 or less carbon atoms, such as hexane or heptane is used as desorbent. Because of the difference in boiling points of a hexane or heptane desorbent as compared to conventional desorbents such as toluene or para-diethylbenzene, less energy is required to separate hexane or heptane from C8 aromatics by distillation than the energy required to separate toluene or diethylbenzene from C8 aromatics by distillation.
    Type: Application
    Filed: July 29, 2016
    Publication date: August 2, 2018
    Inventors: Meha RUNGTA, Jeevan S. ABICHANDANI, Dana L. PILLIOD, Robert G. TINGER, Anthony GO, Ke ZHANG, Sankar NAIR, Jason GEE, David SHOLL
  • Patent number: 9695097
    Abstract: This invention relates to a process for producing ethanol comprises supplying a feed comprising carbon monoxide, hydrogen and dimethyl ether to a reaction zone operated under conditions such that (i) part of the carbon monoxide in the feed reacts with part of the hydrogen in the feed to produce methanol; (ii) part of the carbon monoxide in the feed reacts with at least part of the dimethyl ether in the feed to produce methyl acetate; and (iii) part of the hydrogen in the feed reacts with at least part of the methyl acetate produced in (ii) to produce an effluent comprising methanol and ethanol. At least part of the ethanol is recovered from the effluent and at least part of the methanol is dehydrated to produce dimethyl ether, which is recycled to the reaction zone.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: July 4, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael Salciccioli, James H. Beech, Jr., Ranjita Ghose, Paul F. Keusenkothen, Meha Rungta
  • Publication number: 20170022129
    Abstract: This invention relates to a process for producing ethanol comprises supplying a feed comprising carbon monoxide, hydrogen and dimethyl ether to a reaction zone operated under conditions such that (i) part of the carbon monoxide in the feed reacts with part of the hydrogen in the feed to produce methanol; (ii) part of the carbon monoxide in the feed reacts with at least part of the dimethyl ether in the feed to produce methyl acetate; and (iii) part of the hydrogen in the feed reacts with at least part of the methyl acetate produced in (ii) to produce an effluent comprising methanol and ethanol. At least part of the ethanol is recovered from the effluent and at least part of the methanol is dehydrated to produce dimethyl ether, which is recycled to the reaction zone.
    Type: Application
    Filed: June 17, 2016
    Publication date: January 26, 2017
    Inventors: Michael Salciccioli, James H. Beech, JR., Ranjita Ghose, Paul F. Keusenkothen, Meha Rungta
  • Patent number: 8911534
    Abstract: Carbon molecular sieve membranes having desirable selectivity for ethylene/ethane separations are prepared from a 3,3?,4,4?-benzophenonetetracarboxylic acid dianhydride 5(6)-amino-1-(4?-aminophenyl)-1,3,3-trimethylindane 4,4-bismaleimidodiphenyl-methane (BTDA-DAPI) precursor solution that is then formed into films or hollow fibers which are pyrolyzed under vacuum or an inert atmosphere to form carbon molecular sieve membranes. Pyrolysis condition variables, including ramp rate, thermal soak time and temperature, are used to optimize the membrane's separation performance.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: December 16, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: William J. Koros, Meha Rungta, Liren Xu
  • Publication number: 20130333562
    Abstract: Carbon molecular sieve membranes having desirable selectivity for ethylene/ethane separations are prepared from a 3,3?,4,4?-benzophenonetetracarboxylic acid dianhydride 5(6)-amino-1-(4?-aminophenyl)-1,3,3-trimethylindane 4,4-bismaleimidodiphenyl-methane (BTDA-DAPI) precursor solution that is then formed into films or hollow fibers which are pyrolyzed under vacuum or an inert atmosphere to form carbon molecular sieve membranes. Pyrolysis condition variables, including ramp rate, thermal soak time and temperature, are used to optimize the membrane's separation performance.
    Type: Application
    Filed: February 28, 2012
    Publication date: December 19, 2013
    Applicant: Georgia Tech Research Corporation
    Inventors: William J. Koros, Meha Rungta, Liren Xu