Patents by Inventor Mehdi Alipour Kallehbasti

Mehdi Alipour Kallehbasti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821310
    Abstract: A method and a system for determining fluid contamination. The method may comprise monitoring a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid, and obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition. The method may further comprise representing a mud composition as a Gaussian distribution, selecting a plurality of input data during a pumpout, determining calculated fluid properties of the reservoir fluid using an equation of state filtrate analysis, and further obtaining updated vales of iterative parameters for use in a mole fraction distribution function. The system may comprise a downhole fluid sampling tool operable to obtain fluid samples of a reservoir fluid contaminated with a well fluid while the downhole fluid sampling tool is disposed in a wellbore, and a processor.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 21, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mehdi Alipour Kallehbasti, Peter Ojo Olapade, Bin Dai, Christopher Michael Jones
  • Publication number: 20230313674
    Abstract: An apparatus comprises a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The apparatus comprises a first radially extendable inner packer that is axially above the pad with respect to the axis of the formation tester tool and a second radially extendable outer packer that is axially above the first radially extendable inner packer. The apparatus comprises a third radially extendable inner packer that is axially below the pad with respect to the axis of the formation tester tool and a fourth radially extendable outer packer that is axially below the third radially extendable inner packer.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11761332
    Abstract: The disclosed embodiments include methods to perform an in-situ determination of a formation property of a downhole formation, methods to operate a tool to perform an in-situ determination of formation properties of a downhole formation, and in-situ formation property measurement tools. In one embodiment, a method to perform an in-situ determination of a formation property includes deploying a tool into a borehole that is drilled through a formation. The method also includes isolating a source zone from an injection zone. While the source zone is isolated from the injection zone, the method further includes withdrawing a fluid that partially fills the source zone; flowing the fluid into the injection zone; injecting the fluid into a first portion of the formation that is along the injection zone; and determining at least one formation property of the first portion based on an injection of the fluid into the first portion.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 19, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Jonas Toelke, Anthony Herman Van Zulekom, Mehdi Alipour Kallehbasti
  • Publication number: 20230203945
    Abstract: A test tool attached to test string comprising a fluid conduit is deployed to a test position within a wellbore. The deployment includes hydraulically isolating a portion of the wellbore proximate the test tool to form an isolation zone containing the test position. A fluid inflow test is performed within the isolation zone and an initial formation property and a fluid property are determined based on the fluid inflow test. A fluid injection test is performed within the isolation zone including applying an injection fluid through the test string into the isolation zone, wherein the flow rate or pressure of the injection fluid application is determined based, at least in part, on the at least one of the formation property and fluid property.
    Type: Application
    Filed: March 1, 2023
    Publication date: June 29, 2023
    Inventors: Mark Anton Proett, Christopher Michael Jones, Michel Joseph LeBlanc, Anthony Herman van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11686193
    Abstract: A method includes positioning a formation tester tool into a borehole formed within a formation and radially expanding a first and second radially extendable packers of the formation tester tool out from the formation tester tool to the formation to form a sealed volume between the first radially extendable packer and the second radially extendable packer. The method includes radially extending a pad of the formation tester tool that is positioned between the first radially extendable packer and the second radially extendable packer to form a sealed connection volume between the formation and a pressure sensor within the pad. The method includes acquiring a first pressure measurement, using the pressure sensor, from fluids in the sealed connection volume and extracting fluid from the sealed volume to reduce pressure around the pad. The method includes acquiring a second pressure measurement, using the pressure sensor, from fluids in the sealed connection volume.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: June 27, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11655705
    Abstract: An apparatus includes a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The formation tester tool includes first and second inner radially extendable packers that are axially above and below the pad, respectively, with respect to the axis of the formation tester tool. The apparatus includes a first outer radially extendable packer that is axially above the first inner radially extendable packer with respect to the axis of the formation tester tool and a second outer radially extendable packer that is axially below the second inner radially extendable packer with respect to the axis of the formation tester tool.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: May 23, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11643928
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: May 9, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Patent number: 11603757
    Abstract: A test tool attached to test string comprising a fluid conduit is deployed to a test position within a wellbore. The deployment includes hydraulically isolating a portion of the wellbore proximate the test tool to form an isolation zone containing the test position. A fluid inflow test is performed within the isolation zone and an initial formation property and a fluid property are determined based on the fluid inflow test. A fluid injection test is performed within the isolation zone including applying an injection fluid through the test string into the isolation zone, wherein the flow rate or pressure of the injection fluid application is determined based, at least in part, on the at least one of the formation property and fluid property.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 14, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Mark Anton Proett, Christopher Michael Jones, Michel Joseph LeBlanc, Anthony Herman van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11592433
    Abstract: Systems, devices, and techniques for determining downhole fluid contamination are disclosed. In one or more embodiments, phase-related properties are measured for a reservoir fluid having a determined composition. An equation-of-state (EOS) is selected and/or tuned based, at least in part, on the measured phase-related properties and the tuned EOS is applied to estimate fluid property values for a reference fluid over specified ranges of at least two thermodynamic properties. Contaminant reference data are generated that correlate the estimated fluid property values for the reference fluid with respective contaminant levels. Within a wellbore, a fluid sample is analyzed to determine a fluid property value. A contaminant level is identified that corresponds within the contaminant reference data to the determined fluid property value of the fluid sample.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: February 28, 2023
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Waqar Ahmad Khan, Mehdi Alipour Kallehbasti, Christopher Michael Jones
  • Publication number: 20220298913
    Abstract: A method includes positioning a formation tester tool into a borehole formed within a formation and radially expanding a first and second radially extendable packers of the formation tester tool out from the formation tester tool to the formation to form a sealed volume between the first radially extendable packer and the second radially extendable packer. The method includes radially extending a pad of the formation tester tool that is positioned between the first radially extendable packer and the second radially extendable packer to form a sealed connection volume between the formation and a pressure sensor within the pad. The method includes acquiring a first pressure measurement, using the pressure sensor, from fluids in the sealed connection volume and extracting fluid from the sealed volume to reduce pressure around the pad. The method includes acquiring a second pressure measurement, using the pressure sensor, from fluids in the sealed connection volume.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Publication number: 20220298914
    Abstract: An apparatus includes a formation tester tool to be positioned in a borehole within a formation, wherein the formation tester tool comprises a pressure sensor and a pad that is radially extendable with respect to an axis of the formation tester tool, and wherein the pressure sensor is inside the pad. The formation tester tool includes first and second inner radially extendable packers that are axially above and below the pad, respectively, with respect to the axis of the formation tester tool. The apparatus includes a first outer radially extendable packer that is axially above the first inner radially extendable packer with respect to the axis of the formation tester tool and a second outer radially extendable packer that is axially below the second inner radially extendable packer with respect to the axis of the formation tester tool.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Patent number: 11359480
    Abstract: To reduce effects of artificial alteration of measured formation pressure downhole, an iterative procedure for accurately measuring formation pressure in drawdown/buildup operations is presently disclosed. During buildup/drawdown operations, pressure measurements are taken by pressure sensors in concentric volumes sealed to the formation. After each buildup operation, pressure in the outer concentric volume is lowered using a pressure sensor therein to a progressively lower pressure until a pattern for the pressure trend stabilizes asymptotically. The true formation pressure is taken after a final buildup operation once pressure measurements stabilize.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 14, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Anthony Herman Van Zuilekom, Mehdi Alipour Kallehbasti
  • Publication number: 20220090497
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Application
    Filed: December 1, 2021
    Publication date: March 24, 2022
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Publication number: 20220057380
    Abstract: Systems, devices, and techniques for determining downhole fluid contamination are disclosed. In one or more embodiments, phase-related properties are measured for a reservoir fluid having a determined composition. An equation-of-state (EOS) is selected and/or tuned based, at least in part, on the measured phase-related properties and the tuned EOS is applied to estimate fluid property values for a reference fluid over specified ranges of at least two thermodynamic properties. Contaminant reference data are generated that correlate the estimated fluid property values for the reference fluid with respective contaminant levels. Within a wellbore, a fluid sample is analyzed to determining a fluid property values. A contaminant level is identified that corresponds within the contaminant reference data to the determined fluid property value of the fluid sample.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Waqar Ahmad Khan, Mehdi Alipour Kallehbasti, Christopher Michael Jones
  • Patent number: 11225866
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: January 18, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, III, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Patent number: 11215603
    Abstract: Systems, devices, and techniques for determining downhole fluid contamination are disclosed. In one or more embodiments, phase-related properties are measured for a reservoir fluid having a determined composition. An equation-of-state (EOS) isselected and/or tuned based, at least in part, on the measured phase-related properties and the tuned EOS is applied to estimate fluid property values for a reference fluid over specified ranges of at least two thermodynamic properties. Contaminant reference data are generated that correlate the estimated fluid property values for the reference fluid with respective contaminant levels. Within a wellbore, a fluid sample is analyzed to determining a fluid property values. A contaminant level is identified that corresponds within the contaminant reference data to the determined fluid property value of the fluid sample.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: January 4, 2022
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Waqar Ahmad Khan, Mehdi Alipour Kallehbasti, Christopher Michael Jones
  • Publication number: 20210363883
    Abstract: The disclosed embodiments include methods to perform an in-situ determination of a formation property of a downhole formation, methods to operate a tool to perform an in-situ determination of formation properties of a downhole formation, and in-situ formation property measurement tools. In one embodiment, a method to perform an in-situ determination of a formation property includes deploying a tool into a borehole that is drilled through a formation. The method also includes isolating a source zone from an injection zone. While the source zone is isolated from the injection zone, the method further includes withdrawing a fluid that partially fills the source zone; flowing the fluid into the injection zone; injecting the fluid into a first portion of the formation that is along the injection zone; and determining at least one formation property of the first portion based on an injection of the fluid into the first portion.
    Type: Application
    Filed: December 4, 2018
    Publication date: November 25, 2021
    Inventors: Christopher Michael JONES, Jonas TOELKE, Anthony Herman VAN ZULEKOM, Mehdi Alipour KALLEHBASTI
  • Patent number: 11156083
    Abstract: Disclosed are methods and systems for determination of fluid contamination of a fluid sample from a downhole fluid sampling tool. A method may comprise obtaining a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid; obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition; obtaining initial values of iterative parameters, wherein the iterative parameters comprise fluid contamination of the fluid sample; determining calculated fluid properties of the reservoir fluid using equation of state flash calculating; and repeating steps of determining component mole fractions and determining calculated fluid properties for use in the mole fraction distribution function until a comparison of one or more of the calculated fluid properties with one or more of the input parameters is within a tolerance error.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 26, 2021
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Tian He, Mehdi Alipour Kallehbasti, Ming Gu, Christopher Michael Jones, Darren Gascooke, Michael T. Pelletier, Di Du
  • Publication number: 20210231012
    Abstract: A siphon pump chimney can be used in a mini-drillstem test to increase formation fluid flow rates. A formation tester can be coupled to a siphon pump chimney via a wet connect assembly to transfer formation fluid from a fluid-bearing formation. The siphon pump chimney can receive the formation fluid through the wet connect and disperse the formation fluid into a drill pipe that is flowing drilling fluid. The siphon pump chimney can include check valves to prevent the drilling fluid from entering the siphon pump chimney. The siphon pump chimney can be configured to have a variable height that can reduce pressure within the siphon pump chimney to a pressure value that can be close to or less than the formation pressure, which can allow a pump to operate at high flow rates or be bypassed in a free flow configuration.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 29, 2021
    Inventors: Christopher Michael Jones, Darren George Gascooke, Anthony Herman Van Zuilekom, III, Etienne Marcel Samson, Michael Thomas Pelletier, Mehdi Alipour Kallehbasti
  • Publication number: 20210047924
    Abstract: A method and system for determining fluid contamination. The method may comprise monitoring a fluid sample, wherein the fluid sample comprises a reservoir fluid contaminated with a well fluid, and obtaining input parameters, wherein the input parameters comprise fluid properties obtained from measurement of the fluid sample and mud filtrate composition. The method may further comprise representing a mud composition as a Gaussian distribution, selecting a plurality of input data during a pumpout, determining calculated fluid properties of the reservoir fluid using an equation of state filtrate analysis, and further obtaining updated values of iterative parameters for use in a mole fraction distribution function.
    Type: Application
    Filed: November 30, 2018
    Publication date: February 18, 2021
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Mehdi Alipour Kallehbasti, Peter Ojo Olapade, Bin Dai, Christopher Michael Jones