Patents by Inventor Mehdi Javanmard

Mehdi Javanmard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11604133
    Abstract: This disclosure provides methods and systems for classifying biological particles, e.g., blood cells, microbes, circulating tumor cells (CTCs). Using impedance flow cytometry, such as multi-frequency impedance cytometry, in conjunction with supervised machine learning, the disclosed methods and systems demonstrated improved accuracy in classifying biological particles.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 14, 2023
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Mehdi Javanmard, Karan Ahuja, Jianye Sui, Joseph R. Bertino
  • Publication number: 20220412947
    Abstract: A sensor apparatus for detecting a heavy metal in a sample.
    Type: Application
    Filed: December 16, 2020
    Publication date: December 29, 2022
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Mehdi Javanmard, Robert Miskewitz, Ali Maher, Clifton Lacy, Azam Gholizadeh
  • Patent number: 11506592
    Abstract: This disclosure provides an impedance cytometer which includes a carrier that can be attached to a living being, with a biosensor mounted thereto. The bio sensor includes a microfluidic flow channel, formed in the carrier, and an impedance circuit. The microfluidic flow channel accommodates passage of a particle therethrough. The impedance circuit, connected to the microfluidic flow channel, includes a signal generator that produces a high-frequency drive signal applied to the flow channel to produce a biosensor output signal having high-frequency variation resulting from the drive signal and low-frequency variation resulting from impedance variation within the flow channel during the particle's passage. A lock-in amplifier is disposed to (i) amplify the bio sensor output signal, (ii) mix the amplified signal with the drive signal, and (iii) frequency-filter the mixed, amplified signal to output an impedance signal representing the low-frequency impedance variation resulting from the passage of the particle.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 22, 2022
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Mehdi Javanmard, Abbas Furniturewalla
  • Publication number: 20220280062
    Abstract: A system and associated method for capturing and detecting a target analyte in a sample comprising an aerosol include a capture device, to capture a sample comprising an aerosol including a target analyte. The capture device includes an input to receive the sample, an output to release the sample for capturing, and a channel to flow the sample from the input toward the output. The channel is configured to accelerate the flowing sample to allow capturing of particles from the flowing sample, to thereby generate a captured sample including the target analyte. A sensor device is coupled to the capture device to receive at least a portion of the captured sample including the target analyte, to detect the target analyte in the captured sample based on an impedance measurement. The capture device can include a nozzle and an impact plate coupled with the nozzle and the sensor device.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 8, 2022
    Inventors: Edward P. DeMauro, German Drazer, Hao Lin, Mehdi Javanmard
  • Patent number: 11099145
    Abstract: Systems and methods electronic barcoding of particles. The methods comprise: performing operations by a spin coater to spin coat a single layer of particles onto a substrate; performing operations by a heat applicator to apply heat to the substrate so as to evaporate a liquid; and performing operations by at least one material depositor to transform the particles into Electronically Barcoded Particles (“EBPs”). EBPs are fabricated by: coating a portion of each said particle of the particles with a first conductive layer; depositing an insulative layer on the first conductive layer; and/or depositing a second conductive layer on the insulative layer so as to form a parallel plate capacitor on the particle. The parallel plate capacitor is tuned so that the particle has a capacitance that is different than the capacitances of other ones of the electronically barcoded particles.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: August 24, 2021
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventor: Mehdi Javanmard
  • Publication number: 20210223234
    Abstract: Described herein are methods, systems and devices for rapidly detecting biomarkers in a biological sample.
    Type: Application
    Filed: May 31, 2019
    Publication date: July 22, 2021
    Applicants: Colgate-Palmolive Company, Rutgers, the State University of New Jersey
    Inventors: Michael FITZGERALD, Shamim ANSARI, Zhongtian LIN, Jianye SUI, Mehdi JAVANMARD, Donghui WU
  • Publication number: 20200333235
    Abstract: This disclosure provides methods and systems for classifying biological particles, e.g., blood cells, microbes, circulating tumor cells (CTCs). Using impedance flow cytometry, such as multi-frequency impedance cytometry, in conjunction with supervised machine learning, the disclosed methods and systems demonstrated improved accuracy in classifying biological particles.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Mehdi Javanmard, Karan Ahuja, Jianye Sui, Joseph R. Bertino
  • Publication number: 20200261907
    Abstract: A sensor for detecting a target analyte in a sample includes a pair of conducting electrodes that are separated by a gap. An insulator is disposed in the gap between the electrodes. Plural wells are defined by one of the electrodes and the insulator, to expose the other of the electrodes. The wells are configured to receive a sample including a target analyte. The target analyte, when present in the sample received in the wells, modulates an impedance between the electrodes. The modulated impedance, which is measurable with an applied electrical voltage, is indicative of the concentration of the target analyte in the sample. The wells can include antibodies immobilized inside the wells, to bind the target analyte, which can be a cytokine. Also provided are a method for label-free sensing of a target analyte in a sample, and a transcutaneous impedance sensor for label-free, in-situ biomarker detection.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 20, 2020
    Inventors: Pengfei Xie, Mehdi Javanmard, Mark George Allen, Wen Shen, Naixin Song
  • Patent number: 10670580
    Abstract: A device for detecting a biomarker for inflammation in a respiratory system includes a sample collection and/or holding area to receive an exhaled breath condensate (EBC) sample obtained from a respiratory system; an electrode system coupled to the sample collection area, the electrode system including reduced graphene oxide (rGO); and circuitry coupled to the electrode system. The circuitry is configured to apply a voltage to the EBC sample in the sample collection area via the electrode system and to measure a current via the electrode system in response to the voltage applied, in order to determine a concentration of nitrite in the EBC sample based on the current measured. The concentration of nitrite is a biomarker for inflammation in the respiratory system.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: June 2, 2020
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Mehdi Javanmard, Azam Gholizadeh, Manish Chhowalla, Robert J. Laumbach, Howard M. Kipen, Clifford P. Weisel, Andrew J. Gow, Damien Voiry
  • Publication number: 20200124519
    Abstract: This disclosure provides an impedance cytometer which includes a carrier that can be attached to a living being, with a biosensor mounted thereto. The bio sensor includes a microfluidic flow channel, formed in the carrier, and an impedance circuit. The microfluidic flow channel accommodates passage of a particle therethrough. The impedance circuit, connected to the microfluidic flow channel, includes a signal generator that produces a high-frequency drive signal applied to the flow channel to produce a biosensor output signal having high-frequency variation resulting from the drive signal and low-frequency variation resulting from impedance variation within the flow channel during the particle's passage. A lock-in amplifier is disposed to (i) amplify the bio sensor output signal, (ii) mix the amplified signal with the drive signal, and (iii) frequency-filter the mixed, amplified signal to output an impedance signal representing the low-frequency impedance variation resulting from the passage of the particle.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 23, 2020
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Mehdi Javanmard, Abbas Furniturewalla
  • Patent number: 10585096
    Abstract: Embodiments of the present disclosure provide for systems of enhancing the signal to noise ratio, methods of orienting a nanomaterial (e.g., an antibody), methods of enhancing the signal to noise ratio in a system (e.g., an assay system), and the like.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 10, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Sam Emaminejad, Mehdi Javanmard, Chaitanya Gupta, Roger T. Howe
  • Publication number: 20190213338
    Abstract: This disclosure provides methods for verifying the integrity of an additive manufacturing process during or after a three-dimensional (3D) print job. The methods include at least one of three validation layers: an acoustic layer, a spatial sensing layer, and a material verification layer. For the acoustic layer, the method includes determining the presence of a signature audio signal. For the spatial sensing layer, the method includes comparing a recorded trajectory with a reference trajectory. The method also includes determining the presence of a signature trajectory. For the material verification layer, the method includes determining the location of a special material in a 3D printed object based on a predetermined pattern in which the special material embedded in a filament. The methods allow for detecting alteration in the additive manufacturing process.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 11, 2019
    Inventors: Saman Zonouz, Mehdi Javanmard, Raheem Beyah, Luis A. Garcia, Tuan-Anh Le, Christian Bayens
  • Publication number: 20190017950
    Abstract: Systems and methods electronic barcoding of particles. The methods comprise: performing operations by a spin coater to spin coat a single layer of particles onto a substrate; performing operations by a heat applicator to apply heat to the substrate so as to evaporate a liquid; and performing operations by at least one material depositor to transform the particles into Electronically Barcoded Particles (“EBPs”). EBPs are fabricated by: coating a portion of each said particle of the particles with a first conductive layer; depositing an insulative layer on the first conductive layer; and/or depositing a second conductive layer on the insulative layer so as to form a parallel plate capacitor on the particle. The parallel plate capacitor is tuned so that the particle has a capacitance that is different than the capacitances of other ones of the electronically barcoded particles.
    Type: Application
    Filed: January 12, 2017
    Publication date: January 17, 2019
    Inventor: Mehdi Javanmard
  • Publication number: 20180348201
    Abstract: A device for detecting a biomarker for inflammation in a respiratory system includes a sample collection and/or holding area to receive an exhaled breath condensate (EBC) sample obtained from a respiratory system; an electrode system coupled to the sample collection area, the electrode system including reduced graphene oxide (rGO); and circuitry coupled to the electrode system. The circuitry is configured to apply a voltage to the EBC sample in the sample collection area via the electrode system and to measure a current via the electrode system in response to the voltage applied, in order to determine a concentration of nitrite in the EBC sample based on the current measured. The concentration of nitrite is a biomarker for inflammation in the respiratory system.
    Type: Application
    Filed: June 4, 2018
    Publication date: December 6, 2018
    Inventors: Mehdi Javanmard, Azam Gholizadeh, Manish Chhowalla, Robert J. Laumbach, Howard M. Kipen, Clifford P. Weisel, Andrew J. Gow, Damien Voiry
  • Patent number: 9981273
    Abstract: The procedure of dielectric electrophoresis (dielectrophoresis or DEP) utilizes field-polarized particles that move under the application of positive (attractive) and/or negative (repulsive) applied forces. This invention uses negative dielectric electrophoresis (negative dielectrophoresis or nDEP) within a microchannel separation apparatus to make particles move (detached) or remain stationary (attached). In an embodiment of the present invention, the nDEP force generated was strong enough to detach Ag-Ab (antigen-antibody) bonds, which are in the order of 400 pN (piconewtons) while maintaining the integrity of the system components.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 29, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mehdi Javanmard, Sam Emaminejad, Janine Mok, Michael N. Mindrinos
  • Publication number: 20170262694
    Abstract: Improved colorimetric analysis of liquid samples is provided. A sample holder is used that delivers predetermined volumes of sample individually to each of several colorimetric test patches at the same time with a sliding action. An opaque housing is employed to prevent ambient light from reaching the test patches when color images of the test patches are acquired. Preferably, a mobile electronic device including a camera is attached to the opaque housing to acquire the images. Optical microscopy can be performed in addition to the colorimetric analysis.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Audrey K. Bowden, Nicholas Dwork, Mehdi Javanmard, Saara Anwar Khan, Kiran Rana Magar, Matthew Alexander Millet, Gennifer Tanabe Smith
  • Publication number: 20160245807
    Abstract: Embodiments of the present disclosure provide for systems of enhancing the signal to noise ratio, methods of orienting a nanomaterial (e.g., an antibody), methods of enhancing the signal to noise ratio in a system (e.g., an assay system), and the like.
    Type: Application
    Filed: October 24, 2014
    Publication date: August 25, 2016
    Applicant: The Board of Trustees of the Leland and Stanford Junior University
    Inventors: SAM EMAMINEJAD, MEHDI JAVANMARD, CHAITANYA GUPTA, ROGER T. HOWE
  • Publication number: 20160146804
    Abstract: Disclosed are specific binding molecules (e.g. antibodies) that are provided in a set of conjugates, where each conjugate comprises an antibody linked to an oligonucleotide (oligo), such as a DNA oligonucleotide. The antibodies in each set are to the same target antigen. One antibody is preferably immobilized so that it remains in the sample reaction after a wash step. One antibody is used for detection since it will remain in the sample after washing only if there is a specific antibody-target antigen. The oligos in a given set hybridize to each other when both antibodies bind to a target with immuno-specificity. However, if the binding is not immune specific, such as in the case of cross-reactivity, the oligos do not hybridize.
    Type: Application
    Filed: June 26, 2014
    Publication date: May 26, 2016
    Inventors: Ronald W. DAVIS, Nicholas HURLBURT, Jacob M. ZAHN, Mehdi JAVANMARD, Janine A. MOK
  • Publication number: 20140102901
    Abstract: The procedure of dielectric electrophoresis (dielectrophoresis or DEP) utilizes field-polarized particles that move under the application of positive (attractive) and/or negative (repulsive) applied forces. This invention uses negative dielectric electrophoresis (negative dielectrophoresis or nDEP) within a microchannel separation apparatus to make particles move (detached) or remain stationary (attached). In an embodiment of the present invention, the nDEP force generated was strong enough to detach Ag-Ab (antigen-antibody) bonds, which are in the order of 400 pN (piconewtons) while maintaining the integrity of the system components.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 17, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Mehdi Javanmard, Sam Emaminejad, Janine Mok, Michael N. Mindrinos
  • Patent number: 8614056
    Abstract: Embodiments of the invention are related to microfluidic devices for detecting or determining the concentration of biomolecules in an analyte comprising: a channel, wherein a surface of said channel is fabricated to be functionalized with at least one molecule selected to interact with a biomolecule, said channel being configured to interact with a microsphere, wherein a surface of said microsphere is fabricated to be functionalized with at least one same or different molecule selected to interact with said biomolecule; a second channel in fluid communication with said first channel; a system to move fluid containing said microsphere through said first and second channels; and a system to measure a change in electrical impedance or optical microscopy across said second channel as said microsphere moves through said second channel. Other embodiments concern related devices, and methods of making and using.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 24, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ronald W. Davis, Mehdi Javanmard, Michael N. Mindrinos, Janine A. Mok