Patents by Inventor Mehdi Kiani

Mehdi Kiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11413465
    Abstract: A method and system for gastric stimulation and imaging for a user. The system having an array of millimeter-sized gastric seeds implanted in a stomach area of a user. Each gastric seed is ultrasonically powered and communicates using a transducer, and the transducer has a recorder to measure a bioelectrical activity in the stomach area of the user. A wearable unit (WU) is worn or carried by the user, and the WU wirelessly powers the gastric seeds. The WU wirelessly communicates with the gastric seeds, and the gastric seeds communicate a parameter to the WU based on the bioelectrical activity. Received pulses by the seeds can be used to localize the position of the seeds and guide the wireless power/data transmission in a self-image-guided manner. A processing unit (PU) wirelessly communicates with the WU, and the WU communicates the parameters from the gastric seeds to the PU.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: August 16, 2022
    Assignee: The Penn State Research Foundation
    Inventor: Mehdi Kiani
  • Publication number: 20210346726
    Abstract: A method and system of neural stimulation and imaging of nervous system of a subject. The method includes the steps of providing an interface device operable to generate an ultrasonic beam for neuroniodulation and imaging of a targeted neural structure of a subject, implanting the interface device in the subject, and providing and disposing an external coil array over the targeted neural structure of the subject, wherein the external coil array is wirelessly powering and communicating with the interface device.
    Type: Application
    Filed: October 11, 2019
    Publication date: November 11, 2021
    Inventor: Mehdi Kiani
  • Publication number: 20210162223
    Abstract: A method and system for gastric stimulation and imaging for a user. The system having an array of millimeter-sized gastric seeds implanted in a stomach area of a user. Each gastric seed is ultrasonically powered and communicates using a transducer, and the transducer has a recorder to measure a bioelectrical activity in the stomach area of the user. A wearable unit (WU) is worn or carried by the user, and the WU wirelessly powers the gastric seeds. The WU wirelessly communicates with the gastric seeds, and the gastric seeds communicate a parameter to the WU based on the bioelectrical activity. Received pulses by the seeds can he used to localize the position of the seeds and guide the wireless power/data transmission in a self-image-guided manner. A processing unit (PU) wirelessly communicates with the WU, and the WU communicates the parameters from the gastric seeds to the PU.
    Type: Application
    Filed: April 11, 2019
    Publication date: June 3, 2021
    Inventor: Mehdi Kiani
  • Patent number: 10763698
    Abstract: A current-based resonant power delivery (CRPD) device and method with multi-cycle switching that enables efficient inductive power transmission at large distances. The proposed CRPD switches the Rx LC-tank for several cycles to utilize it as a current source. Therefore, the voltage across the load (RL) can be significantly higher than the Rx LC-tank voltage. In CRPD, the energy may first be stored in the receiver (Rx) coil by shorting the Rx LC-tank for several power carrier cycles. At the peak of Rx coil current, the coil energy may then be transferred to load (RL) for a quarter of the power carrier cycle.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 1, 2020
    Assignee: The Penn State Research Foundation
    Inventors: Mehdi Kiani, Hesam Sadeghi Gougheri
  • Publication number: 20180062447
    Abstract: A current-based resonant power delivery (CRPD) device and method with multi-cycle switching that enables efficient inductive power transmission at large distances. The proposed CRPD switches the Rx LC-tank for several cycles to utilize it as a current source. Therefore, the voltage across the load (RL) can be significantly higher than the Rx LC-tank voltage. In CRPD, the energy may first be stored in the receiver (Rx) coil by shorting the Rx LC-tank for several power carrier cycles. At the peak of Rx coil current, the coil energy may then be transferred to load (RL) for a quarter of the power carrier cycle.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 1, 2018
    Inventors: Mehdi Kiani, Hesam Sadeghi Gougheri
  • Patent number: 9294154
    Abstract: A method of wirelessly transmitting power or data is disclosed. The method may include the step of providing a transmitter including a driver coil and a first transmitter resonator coil. The driver coil may have a driver coil resonance frequency, and the first transmitter coil may have a first transmitter resonator coil resonance frequency. The method may further include the step of providing a receiver including a load coil having a load coil resonance frequency. Furthermore, the method may include tuning the first transmitter coil resonance frequency to be higher than both of the driver coil resonance frequency and the load coil resonance frequency.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: March 22, 2016
    Assignee: Georgia Tech Research Corporation
    Inventors: Maysam Ghovanloo, Dukju Ahn, Mehdi Kiani
  • Patent number: 9094913
    Abstract: Certain implementations may include systems, methods, and apparatus for wirelessly transmitting data and power across inductive links using pulse delay modulation (PDM). According to an example implementation, a method is provided that includes generating a power carrier signal; generating a data waveform from a series of binary bits, the data waveform including a series of pulses in synchronization with the power carrier signal; transmitting, from one or more transmitting (Tx) coils of an inductive link, the power carrier signal and the data waveform; receiving, by one or more receiving (Rx) coils of the inductive link, an interference signal, the interference signal based at least in part on a superposition of the transmitted power carrier signal and the transmitted data waveform; determining zero crossings of the received interference signal; determining delays associated with the zero crossings; and determining the data packet based at least in part on the delays.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: July 28, 2015
    Assignee: Georgia Tech Research Corporation
    Inventors: Maysam Ghovanloo, Mehdi Kiani
  • Publication number: 20140273835
    Abstract: A method of wirelessly transmitting power or data is disclosed. The method may include the step of providing a transmitter including a driver coil and a first transmitter resonator coil. The driver coil may have a driver coil resonance frequency, and the first transmitter coil may have a first transmitter resonator coil resonance frequency. The method may further include the step of providing a receiver including a load coil having a load coil resonance frequency. Furthermore, the method may include tuning the first transmitter coil resonance frequency to be higher than both of the driver coil resonance frequency and the load coil resonance frequency.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Maysam Ghovanloo, Dukju Ahn, Mehdi Kiani
  • Publication number: 20140140420
    Abstract: Certain implementations may include systems, methods, and apparatus for wirelessly transmitting data and power across inductive links using pulse delay modulation (PDM). According to an example implementation, a method is provided that includes generating a power carrier signal; generating a data waveform from a series of binary bits, the data waveform including a series of pulses in synchronization with the power carrier signal; transmitting, from one or more transmitting (Tx) coils of an inductive link, the power carrier signal and the data waveform; receiving, by one or more receiving (Rx) coils of the inductive link, an interference signal, the interference signal based at least in part on a superposition of the transmitted power carrier signal and the transmitted data waveform; determining zero crossings of the received interference signal; determining delays associated with the zero crossings; and determining the data packet based at least in part on the delays.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 22, 2014
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Maysam Ghovanloo, Mehdi Kiani