Patents by Inventor Mehmet Akif Gulsun

Mehmet Akif Gulsun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11127138
    Abstract: Systems and methods are provided for evaluating an aorta of a patient. A medical image of an aorta of a patient is received. The aorta is segmented from the medical image. One or more measurement planes are identified on the segmented aorta. At least one measurement is calculated at each of the one or more measurement planes. The aorta of the patient is evaluated based on the at least one measurement calculated at each of the one or more measurement planes.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 21, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Saikiran Rapaka, Mehmet Akif Gulsun, Dominik Neumann, Jonathan Sperl, Rainer Kaergel, Bogdan Georgescu, Puneet Sharma
  • Publication number: 20210225015
    Abstract: Systems and methods for computing a transformation for correction motion between a first medical image and a second medical image are provided. One or more landmarks are detected in the first medical image and the second medical image. A first tree of the anatomical structure is generated from the first medical image based on the one or more landmarks detected in the first medical image and a second tree of the anatomical structure is generated from the second medical image based on the one or more landmarks detected in the second medical image. The one or more landmarks detected in the first medical image are mapped to the one or more landmarks detected in the second medical image based on the first tree and the second tree. A transformation to align the first medical image and the second medical image is computed based on the mapping.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Inventors: Bibo Shi, Luis Carlos Garcia-Peraza Herrera, Ankur Kapoor, Mehmet Akif Gulsun, Tiziano Passerini, Tommaso Mansi
  • Patent number: 11051779
    Abstract: A first sequence of cardiac image frames are received by a first neural network of the neural network system. The first neural network outputs a first set of feature values. The first set of feature values includes a plurality of data subsets, each corresponding to a respective image frame and relating to spatial features of the respective image frame. The first set of feature values are received at a second neural network of the neural network system. The second neural network outputs a second set of feature values relating to temporal features of the spatial features. Based on the second set of feature values, a cardiac phase value relating to a cardiac phase associated with a first image frame is determined.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: July 6, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Alexandru Turcea, Costin Florian Ciusdel, Lucian Mihai Itu, Mehmet Akif Gulsun, Tiziano Passerini, Puneet Sharma
  • Publication number: 20210158580
    Abstract: Systems and methods are provided for three dimensional depth reconstruction of vessels in two dimensional medical images. A medical image comprising braches of one or more vessels is received. A branch overlap image channel that represents a pixelwise probability that the branches overlap is generated. A set of branch orientation image channels are generated. Each branch orientation image channel is associated with one of a plurality of orientations. Each branch orientation image channel representing a image channel represents a pixelwise probability that the branches are oriented in its associated orientation. A multi-channel depth image is generated based on the branch overlap image channel and the set of branch orientation image channels. Each channel of the multi-channel depth image comprises portions of the branches corresponding to a respective depth.
    Type: Application
    Filed: June 13, 2019
    Publication date: May 27, 2021
    Inventors: Thibaut Barroyer, Mehmet Akif Gulsun
  • Publication number: 20210110135
    Abstract: Methods and systems for artificial intelligence based medical image segmentation are disclosed. In a method for autonomous artificial intelligence based medical image segmentation, a medical image of a patient is received. A current segmentation context is automatically determined based on the medical image and at least one segmentation algorithm is automatically selected from a plurality of segmentation algorithms based on the current segmentation context. A target anatomical structure is segmented in the medical image using the selected at least one segmentation algorithm.
    Type: Application
    Filed: November 24, 2020
    Publication date: April 15, 2021
    Inventors: Shaohua Kevin Zhou, Mingqing Chen, Hui Ding, Bogdan Georgescu, Mehmet Akif Gulsun, Tae Soo Kim, Atilla Peter Kiraly, Xiaoguang Lu, Jin-hyeong Park, Puneet Sharma, Shanhui Sun, Daguang Xu, Zhoubing Xu, Yefeng Zheng
  • Patent number: 10878219
    Abstract: Methods and systems for artificial intelligence based medical image segmentation are disclosed. In a method for autonomous artificial intelligence based medical image segmentation, a medical image of a patient is received. A current segmentation context is automatically determined based on the medical image and at least one segmentation algorithm is automatically selected from a plurality of segmentation algorithms based on the current segmentation context. A target anatomical structure is segmented in the medical image using the selected at least one segmentation algorithm.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 29, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Shaohua Kevin Zhou, Mingqing Chen, Hui Ding, Bogdan Georgescu, Mehmet Akif Gulsun, Tae Soo Kim, Atilla Peter Kiraly, Xiaoguang Lu, Jin-hyeong Park, Puneet Sharma, Shanhui Sun, Daguang Xu, Zhoubing Xu, Yefeng Zheng
  • Patent number: 10762637
    Abstract: Systems and methods are provided for automatic segmentation of a vessel. A sequence of image slices containing a vessel is acquired. Features maps are generated for each of the image slices using a trained fully convolutional neural network. A trained bi-directional recurrent neural network generates a segmented image based on the feature maps.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: September 1, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Puneet Sharma, Vivek Kumar Singh, Tiziano Passerini
  • Publication number: 20200160527
    Abstract: Systems and methods are provided for evaluating an aorta of a patient. A medical image of an aorta of a patient is received. The aorta is segmented from the medical image. One or more measurement planes are identified on the segmented aorta. At least one measurement is calculated at each of the one or more measurement planes. The aorta of the patient is evaluated based on the at least one measurement calculated at each of the one or more measurement planes.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: Saikiran Rapaka, Mehmet Akif Gulsun, Dominik Neumann, Jonathan Sperl, Rainer Kaergel, Bogdan Georgescu, Puneet Sharma
  • Publication number: 20200085394
    Abstract: A first sequence of cardiac image frames are received by a first neural network of the neural network system. The first neural network outputs a first set of feature values. The first set of feature values includes a plurality of data subsets, each corresponding to a respective image frame and relating to spatial features of the respective image frame. The first set of feature values are received at a second neural network of the neural network system. The second neural network outputs a second set of feature values relating to temporal features of the spatial features. Based on the second set of feature values, a cardiac phase value relating to a cardiac phase associated with a first image frame is determined.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 19, 2020
    Inventors: Alexandru Turcea, Costin Florian Ciusdel, Lucian Mihai Itu, Mehmet Akif Gulsun, Tiziano Passerini, Puneet Sharma
  • Patent number: 10474917
    Abstract: A computer-implemented method for editing image processing results includes performing one or more image processing tasks on an input image using an iterative editing process. The iterative editing process is executed until receiving a user exit request. Each iteration of the iterative editing process comprises using a first machine learning model to generate a plurality of processed images. Each processed image corresponds to a distinct set of processing parameters. The iterative editing process further comprises presenting the plurality of processed images to a user on a display and receiving a user response comprising (i) an indication of acceptance of one or more of the processed images, (ii) an indication of rejection of all of the processed images, or (iii) the user exit request. Following the iterative editing process clinical tasks are performed using at least one of the processed images generated immediately prior to receiving the user exit request.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: November 12, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Tiziano Passerini, Mehmet Akif Gulsun
  • Publication number: 20190205606
    Abstract: Methods and systems for artificial intelligence based medical image segmentation are disclosed. In a method for autonomous artificial intelligence based medical image segmentation, a medical image of a patient is received. A current segmentation context is automatically determined based on the medical image and at least one segmentation algorithm is automatically selected from a plurality of segmentation algorithms based on the current segmentation context. A target anatomical structure is segmented in the medical image using the selected at least one segmentation algorithm.
    Type: Application
    Filed: July 19, 2017
    Publication date: July 4, 2019
    Inventors: Shaohua Kevin Zhou, Mingqing Chen, Hui Ding, Bogdan Georgescu, Mehmet Akif Gulsun, Tae Soo Kim, Atilla Peter Kiraly, Xiaoguang Lu, Jin-hyeong Park, Puneet Sharma, Shanhui Sun, Daguang Xu, Zhoubing Xu, Yefeng Zheng
  • Publication number: 20190130578
    Abstract: Systems and methods are provided for automatic segmentation of a vessel. A sequence of image slices containing a vessel is acquired. Features maps are generated for each of the image slices using a trained fully convolutional neural network. A trained bi-directional recurrent neural network generates a segmented image based on the feature maps.
    Type: Application
    Filed: October 27, 2017
    Publication date: May 2, 2019
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Puneet Sharma, Vivek Kumar Singh, Tiziano Passerini
  • Publication number: 20190095738
    Abstract: A computer-implemented method for editing image processing results includes performing one or more image processing tasks on an input image using an iterative editing process. The iterative editing process is executed until receiving a user exit request. Each iteration of the iterative editing process comprises using a first machine learning model to generate a plurality of processed images. Each processed image corresponds to a distinct set of processing parameters. The iterative editing process further comprises presenting the plurality of processed images to a user on a display and receiving a user response comprising (i) an indication of acceptance of one or more of the processed images, (ii) an indication of rejection of all of the processed images, or (iii) the user exit request. Following the iterative editing process clinical tasks are performed using at least one of the processed images generated immediately prior to receiving the user exit request.
    Type: Application
    Filed: September 26, 2017
    Publication date: March 28, 2019
    Inventors: Puneet Sharma, Tiziano Passerini, Mehmet Akif Gulsun
  • Patent number: 10206646
    Abstract: A method and apparatus for extracting centerline representations of vascular structures in medical images is disclosed. A vessel orientation tensor for each of a plurality of voxels associated with the target vessel, such as a coronary artery, in a medical image, such as a coronary tomography angiography (CTA) image, using a trained vessel orientation tensor classifier. A flow field is estimated for the plurality of voxels associated with the target vessel in the medical image based on the vessel orientation tensor estimated for each of the plurality of voxels. A centerline of the target vessel is extracted based on the estimated flow field for the plurality of vessels associated with the target vessel in the medical image by detecting a path that carries maximum flow.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: February 19, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Saikiran Rapaka, Viorel Mihalef, Puneet Sharma, Gareth Funka-Lea
  • Patent number: 10210612
    Abstract: A method and apparatus for machine learning based detection of vessel orientation tensors of a target vessel from a medical image is disclosed. For each of a plurality of voxels in a medical image, such as a computed tomography angiography (CTA), features are extracted from sampling patches oriented to each of a plurality of discrete orientations in the medical image. A classification score is calculated for each of the plurality of discrete orientations at each voxel based on the features extracted from the sampling patches oriented to each of the plurality of discrete orientations using a trained vessel orientation tensor classifier. A vessel orientation tensor at each voxel is calculated based on the classification scores of the plurality of discrete orientations at that voxel.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: February 19, 2019
    Assignee: Siemens Healthcare GmbH
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Saikiran Rapaka, Gareth Funka-Lea
  • Patent number: 10115039
    Abstract: A method and apparatus for learning based classification of vascular branches to distinguish falsely detected branches from true branches is disclosed. A plurality of overlapping fixed size branch segments are sampled from branches of a detected centerline tree of a target vessel extracted from a medical image of a patient. A plurality of 1D profiles are extracted along each of the overlapping fixed size branch segments. A probability score for each of the overlapping fixed size branch segments is calculated based on the plurality of 1D profiles extracted for each branch segment using a trained deep neural network classifier. The trained deep neural network classifier may be a convolutional neural network (CNN) trained to predict a probability of a branch segment being fully part of a target vessel based on multi-channel 1D input.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: October 30, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Gareth Funka-Lea, Mingqing Chen
  • Publication number: 20170262981
    Abstract: A method and apparatus for machine learning based detection of vessel orientation tensors of a target vessel from a medical image is disclosed. For each of a plurality of voxels in a medical image, such as a computed tomography angiography (CTA), features are extracted from sampling patches oriented to each of a plurality of discrete orientations in the medical image. A classification score is calculated for each of the plurality of discrete orientations at each voxel based on the features extracted from the sampling patches oriented to each of the plurality of discrete orientations using a trained vessel orientation tensor classifier. A vessel orientation tensor at each voxel is calculated based on the classification scores of the plurality of discrete orientations at that voxel.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 14, 2017
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Saikiran Rapaka, Gareth Funka-Lea
  • Publication number: 20170262733
    Abstract: A method and apparatus for learning based classification of vascular branches to distinguish falsely detected branches from true branches is disclosed. A plurality of overlapping fixed size branch segments are sampled from branches of a detected centerline tree of a target vessel extracted from a medical image of a patient. A plurality of 1D profiles are extracted along each of the overlapping fixed size branch segments. A probability score for each of the overlapping fixed size branch segments is calculated based on the plurality of 1D profiles extracted for each branch segment using a trained deep neural network classifier. The trained deep neural network classifier may be a convolutional neural network (CNN) trained to predict a probability of a branch segment being fully part of a target vessel based on multi-channel 1D input.
    Type: Application
    Filed: March 1, 2017
    Publication date: September 14, 2017
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Gareth Funka-Lea, Mingqing Chen
  • Publication number: 20170258433
    Abstract: A method and apparatus for extracting centerline representations of vascular structures in medical images is disclosed. A vessel orientation tensor for each of a plurality of voxels associated with the target vessel, such as a coronary artery, in a medical image, such as a coronary tomography angiography (CTA) image, using a trained vessel orientation tensor classifier. A flow field is estimated for the plurality of voxels associated with the target vessel in the medical image based on the vessel orientation tensor estimated for each of the plurality of voxels. A centerline of the target vessel is extracted based on the estimated flow field for the plurality of vessels associated with the target vessel in the medical image by detecting a path that carries maximum flow.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 14, 2017
    Inventors: Mehmet Akif Gulsun, Yefeng Zheng, Saikiran Rapaka, Viorel Mihalef, Puneet Sharma, Gareth Funka-Lea
  • Patent number: 9689949
    Abstract: Phase unwrapping is provided for phase contrast magnetic resonance (MR) imaging. The velocity values are unaliased. For a given location over time, a path over time through a directed graph of possible velocities at each time is determined by minimization of derivatives over time. The possible velocities are based on the input velocity, the input velocity wrapped in a positive direction, and the input velocity wrapped in a negative direction, so the selection to create the minimum cost path represents unaliasing of any aliased velocities.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: June 27, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Mehmet Akif Gulsun, Marie-Pierre Jolly, Christoph Guetter