Patents by Inventor Mehmet N. Agaoglu
Mehmet N. Agaoglu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12197643Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: GrantFiled: August 25, 2023Date of Patent: January 14, 2025Assignee: Apple Inc.Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Publication number: 20240402800Abstract: Various implementations disclosed herein include devices, systems, and methods that interpret user activity as user interactions with user interface (UI) elements positioned within a three-dimensional (3D) space such as an extended reality (XR) environment. Some implementations enable user interactions with virtual elements displayed in 3D environments that utilize alternative input modalities, e.g., XR environments that interpret user activity as either direct interactions or indirect interactions with virtual elements.Type: ApplicationFiled: May 29, 2024Publication date: December 5, 2024Inventors: Julian K. Shutzberg, David J. Meyer, David M. Teitelbaum, Mehmet N. Agaoglu, Ian R. Fasel, Chase B. Lortie, Daniel J. Brewer, Tim H. Cornelissen, Leah M. Gum, Alexander G. Berardino, Lorenzo Soto Doblado, Vinay Chawda, Itay Bar Yosef, Dror Irony, Eslam A. Mostafa, Guy Engelhard, Paul A. Lacey, Ashwin Kumar Asoka Kumar Shenoi, Bhavin Vinodkumar Nayak, Liuhao Ge, Lucas Soffer, Victor Belyaev, Bharat C. Dandu, Matthias M. Schroeder, Yirong Tang
-
Publication number: 20240393876Abstract: Various implementations provide views of 3D environments (e.g., extended reality (XR) environments). Non-eye-based user activity, such as hand gestures, is associated with some types of eye-based activity, such as the user gazing at a particular user interface component displayed within a view of a 3D environment. For example, a user's pinching hand gesture may be associated with the user gazing at a particular user interface component, such as a button, at around the same time as the pinching hand gesture is made. These associated behaviors (e.g., the pinch and gaze at the button) may then be interpreted as user input, e.g., user input selecting or otherwise acting upon that user interface component. In some implementations, non-eye-based user activity is only associated with types of eye-based user activity that are likely to correspond to a user perceiving what they are seeing and/or intentionally looking at something.Type: ApplicationFiled: July 31, 2024Publication date: November 28, 2024Inventors: Vinay Chawda, Mehmet N. Agaoglu, Leah M. Gum, Paul A. Lacey, Julian K. Shutzberg, Tim H. Cornelissen, Alexander G. Berardino
-
Patent number: 12131719Abstract: An electronic device may include a display. Control circuitry may operate the display at different frame rates such as 60 Hz, 80 Hz, and 120 Hz. The control circuitry may determine which frame rate to use based on a speed of animation on the display and based on a type of animation on the display. To mitigate the appearance of judder as the display frame rate changes, the control circuitry may implement techniques such as hysteresis (e.g., windows of tolerance around speed thresholds to ensure that the display frame rate does not change too frequently as a result of noise), speed thresholds that are based on a user perception study, consistent latency between touch input detection and corresponding display output across different frame rates (e.g., using a fixed touch scan rate that is independent of frame duration), and animation-specific speed thresholds for triggering frame rate changes.Type: GrantFiled: August 12, 2022Date of Patent: October 29, 2024Assignee: Apple Inc.Inventors: Wanqing Xin, Mehmet N Agaoglu, Gokhan Avkarogullari, Jenny Hu, Alexander K Kan, Yuhui Li, James R Montgomerie, Andrey Pokrovskiy, Yingying Tang, Chaohao Wang
-
Patent number: 12099653Abstract: Various implementations provide views of 3D environments (e.g., extended reality (XR) environments). Non-eye-based user activity, such as hand gestures, is associated with some types of eye-based activity, such as the user gazing at a particular user interface component displayed within a view of a 3D environment. For example, a user's pinching hand gesture may be associated with the user gazing at a particular user interface component, such as a button, at around the same time as the pinching hand gesture is made. These associated behaviors (e.g., the pinch and gaze at the button) may then be interpreted as user input, e.g., user input selecting or otherwise acting upon that user interface component. In some implementations, non-eye-based user activity is only associated with types of eye-based user activity that are likely to correspond to a user perceiving what they are seeing and/or intentionally looking at something.Type: GrantFiled: September 11, 2023Date of Patent: September 24, 2024Assignee: APPLE INC.Inventors: Vinay Chawda, Mehmet N. Agaoglu, Leah M. Gum, Paul A. Lacey, Julian K. Shutzberg, Tim H. Cornelissen, Alexander G. Berardino
-
Publication number: 20240103613Abstract: Various implementations provide views of 3D environments (e.g., extended reality (XR) environments). Non-eye-based user activity, such as hand gestures, is associated with some types of eye-based activity, such as the user gazing at a particular user interface component displayed within a view of a 3D environment. For example, a user's pinching hand gesture may be associated with the user gazing at a particular user interface component, such as a button, at around the same time as the pinching hand gesture is made. These associated behaviors (e.g., the pinch and gaze at the button) may then be interpreted as user input, e.g., user input selecting or otherwise acting upon that user interface component. In some implementations, non-eye-based user activity is only associated with types of eye-based user activity that are likely to correspond to a user perceiving what they are seeing and/or intentionally looking at something.Type: ApplicationFiled: September 11, 2023Publication date: March 28, 2024Inventors: Vinay Chawda, Mehmet N. Agaoglu, Leah M. Gum, Paul A. Lacey, Julian K. Shutzberg, Tim H. Cornelissen, Alexander G. Birardino
-
Publication number: 20240045502Abstract: In an embodiment, an electronic device includes a display and an eye tracker. The display includes one or more foveated areas. In the embodiment, the eye tracker is configured to collect eye tracking data regarding a gaze of one or more eyes of a user on the display. The electronic device also includes processing circuitry operatively coupled to the display. In the embodiment, the processing circuitry is configured to receive an indication of a motion associated with the gaze from the eye tracker. The processing circuitry is also configured to determine a previous location associated with the gaze during a previous frame and a target position associated with the gaze during a target frame. In the embodiment, the processing circuitry is configured to expand one or more foveated areas of the display adjacent a previous position of the gaze of the user.Type: ApplicationFiled: October 17, 2023Publication date: February 8, 2024Inventors: Yang Li, Alexandre Chapiro, Mehmet N. Agaoglu, Nicolas Pierre Marie Frederic Bonnier, Yi-Pai Huang, Chaohao Wang, Andrew B. Watson, Pretesh A. Mascarenhas
-
Publication number: 20230418372Abstract: Various implementations disclosed herein include devices, systems, and methods that determine a gaze behavior state to identify gaze shifting events, gaze holding events, and loss events of a user based on physiological data. For example, an example process may include obtaining eye data associated with a gaze during a first period of time (e.g., eye position and velocity, interpupillary distance, pupil diameters, etc.). The process may further include obtaining head data associated with the gaze during the first period of time (e.g., head position and velocity). The process may further include determining a first gaze behavior state during the first period of time to identify gaze shifting events, gaze holding events, and loss events (e.g., one or more gaze and head pose characteristics may be determined, aggregated, and used to classify the user's eye movement state using machine learning techniques).Type: ApplicationFiled: June 20, 2023Publication date: December 28, 2023Inventors: Mehmet N. Agaoglu, Andrew B. Watson, Tim H. Cornelissen, Alexander G. Berardino
-
Publication number: 20230400921Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: ApplicationFiled: August 25, 2023Publication date: December 14, 2023Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Patent number: 11822715Abstract: In an embodiment, an electronic device includes a display and an eye tracker. The display includes one or more foveated areas. In the embodiment, the eye tracker is configured to collect eye tracking data regarding a gaze of one or more eyes of a user on the display. The electronic device also includes processing circuitry operatively coupled to the display. In the embodiment, the processing circuitry is configured to receive an indication of a motion associated with the gaze from the eye tracker. The processing circuitry is also configured to determine a previous location associated with the gaze during a previous frame and a target position associated with the gaze during a target frame. In the embodiment, the processing circuitry is configured to expand one or more foveated areas of the display adjacent a previous position of the gaze of the user.Type: GrantFiled: May 10, 2021Date of Patent: November 21, 2023Assignee: Apple Inc.Inventors: Yang Li, Alexandre Chapiro, Mehmet N. Agaoglu, Nicolas Pierre Marie Frederic Bonnier, Yi-Pai Huang, Chaohao Wang, Andrew B. Watson, Pretesh A. Mascarenhas
-
Patent number: 11782503Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: GrantFiled: October 5, 2020Date of Patent: October 10, 2023Assignee: Apple Inc.Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Publication number: 20230239586Abstract: Tracking an eye characteristic (e.g., gaze direction or pupil position) of a user's eyes by staggering image capture and using a predicted relationship between the user's eyes between eye captures to predict that eye's eye characteristic between those eye captures. Images of a user's eyes are captured in a staggered manner in the sense that the images of second eye are captured between the capture times of the images of the first eye and vice versa. An eye characteristic of the first eye at the capture times is determined based on the images of the first eye at those times. In addition, the eye characteristic of that first eye is predicted at additional times between captures based on a predicted relationship between the eyes.Type: ApplicationFiled: January 25, 2023Publication date: July 27, 2023Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Publication number: 20230077843Abstract: An electronic device may include a display. Control circuitry may operate the display at different frame rates such as 60 Hz, 80 Hz, and 120 Hz. The control circuitry may determine which frame rate to use based on a speed of animation on the display and based on a type of animation on the display. To mitigate the appearance of judder as the display frame rate changes, the control circuitry may implement techniques such as hysteresis (e.g., windows of tolerance around speed thresholds to ensure that the display frame rate does not change too frequently as a result of noise), speed thresholds that are based on a user perception study, consistent latency between touch input detection and corresponding display output across different frame rates (e.g., using a fixed touch scan rate that is independent of frame duration), and animation-specific speed thresholds for triggering frame rate changes.Type: ApplicationFiled: August 12, 2022Publication date: March 16, 2023Inventors: Wanqing Xin, Mehmet N Agaoglu, Gokhan Avkarogullari, Jenny Hu, Alexander K Kan, Yuhui Li, James R Montgomerie, Andrey Pokrovskiy, Yingying Tang, Chaohao Wang
-
Publication number: 20220011858Abstract: In an embodiment, an electronic device includes a display and an eye tracker. The display includes one or more foveated areas. In the embodiment, the eye tracker is configured to collect eye tracking data regarding a gaze of one or more eyes of a user on the display. The electronic device also includes processing circuitry operatively coupled to the display. In the embodiment, the processing circuitry is configured to receive an indication of a motion associated with the gaze from the eye tracker. The processing circuitry is also configured to determine a previous location associated with the gaze during a previous frame and a target position associated with the gaze during a target frame. In the embodiment, the processing circuitry is configured to expand one or more foveated areas of the display adjacent a previous position of the gaze of the user.Type: ApplicationFiled: May 10, 2021Publication date: January 13, 2022Inventors: Yang Li, Alexandre Chapiro, Mehmet N. Agaoglu, Nicolas Pierre Marie Frederic Bonnier, Yi-Pai Huang, Chaohao Wang, Andrew B. Watson, Pretesh A. Mascarenhas
-
Publication number: 20210018979Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: ApplicationFiled: October 5, 2020Publication date: January 21, 2021Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Patent number: 10890968Abstract: An electronic device may have a foveated display, an eye-tracking system and a head movement detection system. The eye-tracking system may gather information on a user's point of regard on the display while the head movement detection system may capture information regarding the rotation of the observer's head. Based on the point-of-regard information, head rotation information, image data, the type of eye/head movement that is underway, and/or tiredness information, control circuitry in the electronic device may produce image data for a display, with areas of different resolutions and(or) visual quality. A full-resolution and(or) quality portion of the image may overlap the point of regard. One or more lower resolution portions of the image may surround the full-resolution portion. The control circuitry may include a gaze prediction system for predicting the movement of the user's gaze during a saccade.Type: GrantFiled: April 5, 2019Date of Patent: January 12, 2021Assignee: Apple Inc.Inventors: Yashas Rai Kurlethimar, Andrew B. Watson, Nicolas P. Bonnier, Mehmet N. Agaoglu, Alexander G. Berardino, Elijah H. Kleeman
-
Patent number: 10802585Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: GrantFiled: June 17, 2019Date of Patent: October 13, 2020Assignee: Apple Inc.Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Publication number: 20200019238Abstract: An electronic device may have a display for displaying image content. Head-mounted support structures in the device may be used to support the display. The electronic device may have an eye monitoring system that detects eye saccades and eye blinks. Control circuitry in the electronic device may coordinate operation of the display with periods of suppressed visual sensitivity that are associated with the saccades and blinks. By making adjustments to display circuitry and image content during periods of suppressed visual sensitivity, potentially visually obtrusive changes to displayed images can be hidden from a user of the electronic device. Adjustments to display operation may help reduce burn-in effects, may help reduce power consumption, and may otherwise improve device performance.Type: ApplicationFiled: June 17, 2019Publication date: January 16, 2020Inventors: Mehmet N. Agaoglu, Andrew B. Watson
-
Publication number: 20190339770Abstract: An electronic device may have a foveated display, an eye-tracking system and a head movement detection system. The eye-tracking system may gather information on a user's point of regard on the display while the head movement detection system may capture information regarding the rotation of the observer's head. Based on the point-of-regard information, head rotation information, image data, the type of eye/head movement that is underway, and/or tiredness information, control circuitry in the electronic device may produce image data for a display, with areas of different resolutions and(or) visual quality. A full-resolution and(or) quality portion of the image may overlap the point of regard. One or more lower resolution portions of the image may surround the full-resolution portion. The control circuitry may include a gaze prediction system for predicting the movement of the user's gaze during a saccade.Type: ApplicationFiled: April 5, 2019Publication date: November 7, 2019Inventors: Yashas Rai Kurlethimar, Andrew B. Watson, Nicolas P. Bonnier, Mehmet N. Agaoglu, Alexander G. Berardino, Elijah H. Kleeman