Patents by Inventor Mehmet Toner

Mehmet Toner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160144378
    Abstract: The invention features devices and methods for the deterministic separation of particles. Exemplary methods include the enrichment of a sample in a desired particle or the alteration of a desired particle in the device. The devices and methods are advantageously employed to enrich for rare cells, e.g., fetal cells, present in a sample, e.g., maternal blood and rare cell components, e.g., fetal cell nuclei. The invention further provides a method for preferentially lysing cells of interest in a sample, e.g., to extract clinical information from a cellular component, e.g., a nucleus, of the cells of interest. In general, the method employs differential lysis between the cells of interest and other cells (e.g., other nucleated cells) in the sample.
    Type: Application
    Filed: November 2, 2015
    Publication date: May 26, 2016
    Inventors: Lotien Richard Huang, Thomas A. Barber, Bruce L. Carvalho, Ravi Kapur, Paul Vernucci, Mehmet Toner, Zihua Wang
  • Patent number: 9347100
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, e.g. aneuploidy. The present invention involves labeling regions of genomic DNA in each cell in said mixed sample with different labels wherein each label is specific to each cell and quantifying the labeled regions of genomic DNA from each cell in the mixed sample. More particularly the invention involves quantifying labeled DNA polymorphisms from each cell in the mixed sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 24, 2016
    Assignees: GPB Scientific, LLC, The General Hospital Corporation, Verinata Health, Inc.
    Inventors: Daniel Shoemaker, Ravi Kapur, Mehmet Toner, Roland Stoughton, Ronald W. Davis
  • Patent number: 9347595
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: May 24, 2016
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Publication number: 20160123857
    Abstract: Extracting and concentrating particles from a first fluid sample includes: providing the first fluid sample to a fluid exchange module of a microfluidic device, providing a second fluid sample to the fluid exchange module, in which the first fluid sample and the second fluid sample are provided under conditions such that particle-free portions of the first fluid sample are shifted, and an inertial lift force causes the particles in the first fluid sample to cross streamlines and transfer into the second fluid sample; passing the second fluid sample containing the transferred particles to a particle concentration module under conditions such that particle-free portions of the second fluid sample are shifted, and such that the particles within the second fluid sample are focused to a streamline within the particle concentration module.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
  • Publication number: 20160123858
    Abstract: A microfluidic device includes: a first microfluidic channel; a second microfluidic channel extending along the first microfluidic channel; and a first array of islands separating the first microfluidic channel from the second microfluidic channel, in which each island is separated from an adjacent island in the array by an opening that fluidly couples the first microfluidic channel to the second microfluidic channel, in which the first microfluidic channel, the second microfluidic channel, and the islands are arranged so that a fluidic resistance of the first microfluidic channel increases relative to a fluidic resistance of the second microfluidic channel along a longitudinal direction of the first microfluidic channel such that, during use of the microfluidic device, a portion of a fluid sample flowing through the first microfluidic channel passes through one or more of the openings between adjacent islands into the second microfluidic channel.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
  • Publication number: 20160121331
    Abstract: A microfluidic device includes a particle sorting region having a first, second and third microfluidic channels, a first array of islands separating the first microfluidic channel from the second microfluidic channel, and a second array of islands separating the first microfluidic channel from the third microfluidic channel, in which the island arrays and the microfluidic channels are arranged so that a first fluid is extracted from the first microfluidic channel into the second microfluidic channel and a second fluid is extracted from the third microfluidic channel into the first microfluidic channel, and so that particles are transferred from the first fluid sample into the second fluid sample within the first microfluidic channel.
    Type: Application
    Filed: November 3, 2015
    Publication date: May 5, 2016
    Inventors: Ravi Kapur, Kyle C. Smith, Mehmet Toner
  • Publication number: 20160102286
    Abstract: Manufactured capillary tubes can include: a tubular member; and a coating applied partially covering the tubular member, the coating defining a window where the tubular member is free of the coating. Kits containing and methods related to the capillary tubes can be used for the cryopreservation of cells.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 14, 2016
    Inventors: Mehmet Toner, Heidi Y. Elmoazzen, Thomas L. Toth, Yunseok Heo, Ho-Joon Lee, Nilay Chakraborty
  • Patent number: 9278353
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 8, 2016
    Assignee: The General Hospital Corporation
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Patent number: 9273355
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, e.g. aneuploidy. The present invention involves labeling regions of genomic DNA in each cell in said mixed sample with different labels wherein each label is specific to each cell and quantifying the labeled regions of genomic DNA from each cell in the mixed sample. More particularly the invention involves quantifying labeled DNA polymorphisms from each cell in the mixed sample.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 1, 2016
    Assignees: The General Hospital Corporation, GPB Scientific, LLC, Verinata Health, Inc.
    Inventors: Daniel Shoemaker, Ravi Kapur, Mehmet Toner, Roland B. Stoughton, Ronald W. Davis
  • Publication number: 20160002737
    Abstract: The present invention relates to methods for detecting, enriching, and analyzing rare cells that are present in the blood, e.g., epithelial cells. The invention further features methods of analyzing rare cell(s) to determine the presence of an abnormality, disease or condition in a subject by analyzing a cellular sample from the subject.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 7, 2016
    Inventors: Martin Fuchs, Ravi Kapur, Mehmet Toner, Zihua Wang
  • Publication number: 20150377753
    Abstract: Methods and systems capturing particles suspended in a fluid flowed through a micro-channel, can include flowing the fluid including the particles to be captured through a micro-channel and past a groove defined in a surface of a wall of the micro-channel such that flowing the fluid past the groove forms microvortices in the fluid; contacting at least some of the particles against an adherent disposed on one or more of walls of the microchannel after the microvortices form in the fluid; and capturing at least some of the particles contacting the adherent.
    Type: Application
    Filed: September 2, 2015
    Publication date: December 31, 2015
    Inventors: Mehmet Toner, Shannon Stott, Chia-Hsien Hsu
  • Publication number: 20150369804
    Abstract: Systems, methods, and devices for selective capture and release of target particles, e.g., living cells, from liquid samples, e.g., blood, are provided. The particle capture systems include a substrate; a first layer of gelatin bound to the substrate by physical adsorption, wherein the gelatin is functionalized with a plurality of first members of a binding pair; a second layer of gelatin wherein the gelatin is functionalized with a plurality of the first members of the binding pair and the second layer is bound to the first layer via a plurality of second members of the binding pair that are associated with the first members of the binding pair on both the first and the second layers; and a plurality of nanostructures bound to the second members of the binding pair and to one or more particle-binding moieties that selectively bind to the target particles.
    Type: Application
    Filed: February 3, 2014
    Publication date: December 24, 2015
    Inventors: Eduardo Reategui, Shannon Stott, Mehmet Toner
  • Publication number: 20150344956
    Abstract: The present invention relates to methods for detecting, enriching, and analyzing rare cells that are present in the blood, e.g. fetal cells. The invention further features methods of analyzing rare cell(s) to determine the presence of an abnormality, disease or condition in a subject, e.g. a fetus by analyzing a cellular sample from the subject.
    Type: Application
    Filed: May 6, 2015
    Publication date: December 3, 2015
    Inventors: Ravi Kapur, Mehmet Toner, Zihua Wang, Martin Fuchs
  • Publication number: 20150336096
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Application
    Filed: June 25, 2013
    Publication date: November 26, 2015
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Patent number: 9174222
    Abstract: The invention features devices and methods for the deterministic separation of particles. Exemplary methods include the enrichment of a sample in a desired particle or the alteration of a desired particle in the device. The devices and methods are advantageously employed to enrich for rare cells, e.g., fetal cells, present in a sample, e.g., maternal blood and rare cell components, e.g., fetal cell nuclei. The invention further provides a method for preferentially lysing cells of interest in a sample, e.g., to extract clinical information from a cellular component, e.g., a nucleus, of the cells of interest. In general, the method employs differential lysis between the cells of interest and other cells (e.g., other nucleated cells) in the sample.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: November 3, 2015
    Assignees: The General Hospital Corporation, GPB Scientific, LLC
    Inventors: Lotien Richard Huang, Thomas Barber, Bruce L. Carvalho, Ravi Kapur, Paul Vernucci, Mehmet Toner, Zihua Wang
  • Publication number: 20150285809
    Abstract: Methods and systems for selectively capturing analytes, such as cells, e.g., circulating tumor cells (CTCs), from fluid samples are disclosed. The methods include contacting the sample with an analyte binding moiety that selectively binds to the analytes; optionally separating first components of the sample including a majority of the analytes bound to the binding moieties from second components of the sample using size-based separation, e.g.
    Type: Application
    Filed: April 10, 2015
    Publication date: October 8, 2015
    Inventors: Thomas A. Barber, Ajay Shah, John Walsh, Mehmet Toner, Ravi Kapur, Shannon Stott
  • Publication number: 20150260711
    Abstract: The invention features methods for separating cells from a sample (e.g., separating fetal red blood cells from maternal blood). The method begins with the introduction of a sample including cells into one or more microfluidic channels. In one embodiment, the device includes at least two processing steps. For example, a mixture of cells is introduced into a microfluidic channel that selectively allows the passage of a desired type of cell, and the population of cells enriched in the desired type is then introduced into a second microfluidic channel that allows the passage of the desired cell to produce a population of cells further enriched in the desired type. The selection of cells is based on a property of the cells in the mixture, for example, size, shape, deformability, surface characteristics (e.g., cell surface receptors or antigens and membrane permeability), or intracellular properties (e.g., expression of a particular enzyme).
    Type: Application
    Filed: March 23, 2015
    Publication date: September 17, 2015
    Inventors: Mehmet Toner, George Truskey, Ravi Kapur
  • Patent number: 9128091
    Abstract: Methods and systems capturing particles suspended in a fluid flowed through a micro-channel, can include flowing the fluid including the particles to be captured through a micro-channel and past a groove defined in a surface of a wall of the micro-channel such that flowing the fluid past the groove forms microvortices in the fluid; contacting at least some of the particles against an adherent disposed on one or more of walls of the microchannel after the microvortices form in the fluid; and capturing at least some of the particles contacting the adherent.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 8, 2015
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Shannon Stott, Chia-Hsien Hsu
  • Publication number: 20150232936
    Abstract: The present invention provides systems, apparatuses, and methods to detect the presence of fetal cells when mixed with a population of maternal cells in a sample and to test fetal abnormalities, e.g. aneuploidy. The present invention involves labeling regions of genomic DNA in each cell in said mixed sample with different labels wherein each label is specific to each cell and quantifying the labeled regions of genomic DNA from each cell in the mixed sample. More particularly the invention involves quantifying labeled DNA polymorphisms from each cell in the mixed sample.
    Type: Application
    Filed: April 27, 2015
    Publication date: August 20, 2015
    Inventors: Daniel Shoemaker, Mehmet Toner, Ravi Kapur, Roland B. Stoughton, Ronald W. Davis
  • Patent number: 9068181
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 30, 2015
    Assignee: The General Hospital Corporation
    Inventors: Jon F. Edd, Mehmet Toner, Dino Dicarlo, Daniel Irimia