Patents by Inventor Mehran Vahdani MOGHADDAM
Mehran Vahdani MOGHADDAM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240230509Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: ApplicationFiled: October 27, 2023Publication date: July 11, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
-
Patent number: 11988593Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: GrantFiled: November 20, 2020Date of Patent: May 21, 2024Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A Ellis, Chris Bonino, Brian A. Knollenberg, James Lumpkin, Daniel Rodier, Dwight Sehler, Mehran Vahdani Moghaddam, Thomas Ramin
-
Publication number: 20240133793Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: ApplicationFiled: October 26, 2023Publication date: April 25, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
-
Publication number: 20240027326Abstract: An optical system for particle size and concentration analysis, includes: at least one laser that produces an illuminating beam; a focusing lens that focuses the illuminating beam on particles that move relative to the illuminating beam at known or pre-defined angles to the illuminating beam through the focal region of the focusing lens; and at least two forward-looking detectors, that detect interactions of particles with the illuminating beam in the focal region of the focusing lens. The focusing lens is a cylindrical lens that forms a focal region that is: (i) narrow in the direction of relative motion between the particles and the illuminating beam, and (ii) wide in a direction perpendicular to a plane defined by an optical axis of the system and the direction of relative motion between the particles and the illuminating beam. Each of the two forward-looking detectors is comprised of two segmented linear arrays of detectors.Type: ApplicationFiled: August 11, 2023Publication date: January 25, 2024Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Nir KARASIKOV, Ori WEINSTEIN, Shoam SHWARTZ, Mehran Vahdani MOGHADDAM, Uri DUBIN
-
Patent number: 11781965Abstract: An optical system for particle size and concentration analysis, includes: at least one laser that produces an illuminating beam; a focusing lens that focuses the illuminating beam on particles that move relative to the illuminating beam at known or pre-defined angles to the illuminating beam through the focal region of the focusing lens; and at least two forward-looking detectors, that detect interactions of particles with the illuminating beam in the focal region of the focusing lens. The focusing lens is a cylindrical lens that forms a focal region that is: (i) narrow in the direction of relative motion between the particles and the illuminating beam, and (ii) wide in a direction perpendicular to a plane defined by an optical axis of the system and the direction of relative motion between the particles and the illuminating beam. Each of the two forward-looking detectors is comprised of two segmented linear arrays of detectors.Type: GrantFiled: October 25, 2018Date of Patent: October 10, 2023Assignee: PARTICLE MEASURING SYSTEMS, INC.Inventors: Nir Karasikov, Ori Weinstein, Shoam Shwartz, Mehran Vahdani Moghaddam, Uri Dubin
-
Publication number: 20230236107Abstract: A particle detection system may include a light source, a first beam splitter, a particle interrogation zone, a reflecting surface, a second beam splitter, a first photodetector, and a second photodetector. The first beam splitter may be configured to split the source beam into an interrogation beam and a reference beam. The particle interrogation zone may be disposed in the path of the interrogation beam. The reflecting surface may be configured to reflect the interrogation beam back on itself. The second beam splitter may be configured to: (i) receive the reference beam and side scattered light from one or more particles interacting with the interrogation beam in the particle interrogation zone; and (ii) produce a first component beam and second component beam. The first photodetector may be configured to detect the first component beam. The second photodetector may be configured to detect the second component beam.Type: ApplicationFiled: January 19, 2023Publication date: July 27, 2023Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Mehran Vahdani MOGHADDAM, Brian A. KNOLLENBERG, Dwight SEHLER
-
Publication number: 20210381948Abstract: Particle detection systems and methods are disclosed. In one embodiment, a particle detection system comprises an incident beam light source that emits an incident beam, a particle interrogation zone disposed in the path of the incident beam, a photodetector disposed to detect the incident beam after passing through the particle interrogation zone, a pump beam light source for emitting a pump beam, the pump beam being targeted at the particle interrogation zone, wherein the incident beam, the pump beam, and photodetector are arranged such that the photodetector is configured to detect a combination of light from the incident beam, scattered light due to incident beam scattering in the particle interrogation zone, and scattered light due to pump beam scattering in the particle interrogation zone.Type: ApplicationFiled: June 8, 2021Publication date: December 9, 2021Applicant: Particle Measuring Systems, Inc.Inventors: Daniel RODIER, Mehran Vahdani MOGHADDAM, Christopher A. BONINO
-
Publication number: 20210208054Abstract: The present invention relates to interferometric detection of particles and optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided exhibiting enhanced alignment and stability for interferometric detection of particles and/or optical detection of particles having size dimensions less than or equal to 100 nm. Systems and methods are provided that include compensation means for mitigating the impact of internal and external stimuli and changes in operating conditions that can degrade the sensitivity and reliability of particle detection via optical methods, including interferometric-based techniques and/or systems for optical detection of particles having size dimensions less than or equal to 100 nm.Type: ApplicationFiled: November 20, 2020Publication date: July 8, 2021Applicant: Particle Measuring Systems, Inc.Inventors: Timothy A. ELLIS, Chris BONINO, Brian A. KNOLLENBERG, James LUMPKIN, Daniel RODIER, Dwight SEHLER, Mehran Vahdani MOGHADDAM, Thomas RAMIN
-
Publication number: 20200240896Abstract: An optical system for particle size and concentration analysis, includes: at least one laser that produces an illuminating beam; a focusing lens that focuses the illuminating beam on particles that move relative to the illuminating beam at known or pre-defined angles to the illuminating beam through the focal region of the focusing lens; and at least two forward-looking detectors, that detect interactions of particles with the illuminating beam in the focal region of the focusing lens. The focusing lens is a cylindrical lens that forms a focal region that is: (i) narrow in the direction of relative motion between the particles and the illuminating beam, and (ii) wide in a direction perpendicular to a plane defined by an optical axis of the system and the direction of relative motion between the particles and the illuminating beam. Each of the two forward-looking detectors is comprised of two segmented linear arrays of detectors.Type: ApplicationFiled: October 25, 2018Publication date: July 30, 2020Applicant: PARTICLE MEASURING SYSTEMS, INC.Inventors: Nir KARASIKOV, Ori WEINSTEIN, Shoam SHWARTZ, Mehran Vahdani MOGHADDAM, Uri DUBIN