Patents by Inventor Mei-Hsuan LIN

Mei-Hsuan LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067746
    Abstract: Disclosed herein are humanized antibodies, antigen-binding fragments thereof, and antibody conjugates, that are capable of specifically binding to certain biantennary Lewis antigens, which antigens are expressed in a variety of cancers. The presently disclosed antibodies are useful to target antigen-expressing cells for treatment or detection of disease, including various cancers. Also provided are polynucleotides, vectors, and host cells for producing the disclosed antibodies and antigen-binding fragments thereof. Pharmaceutical compositions, methods of treatment and detection, and uses of the antibodies, antigen-binding fragments, antibody conjugates, and compositions are also provided.
    Type: Application
    Filed: February 28, 2023
    Publication date: February 29, 2024
    Inventors: Tong-Hsuan CHANG, Mei-Chun YANG, Liahng-Yirn LIU, Jerry TING, Shu-Yen CHANG, Yen-Ying CHEN, Yu-Yu LIN, Shu-Lun TANG
  • Publication number: 20240003692
    Abstract: A method includes: receiving an auxiliary routing request from a manufacturing execution system (MES) apparatus of a first site by an inter-site backup management apparatus; selecting an auxiliary route to a second site based on the auxiliary routing request and a statistical model by the inter-site backup management apparatus; including the auxiliary route in a route associated with a wafer lot by the MES apparatus; and performing a semiconductor processing operation on a wafer of the wafer lot according to the route.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Mei-Hsuan Lin, Rong Syuan Fan, Jen-Yuan Chang
  • Publication number: 20230395414
    Abstract: A semiconductor processing system includes a first semiconductor processing site and a second semiconductor processing site. The system includes an unmanned electric vehicle configured to carry a portable cleanroom stocker between the first and second semiconductor processing sites. The portable cleanroom stocker is configured to maintain cleanroom conditions within the portable cleanroom stocker during transportation.
    Type: Application
    Filed: June 3, 2022
    Publication date: December 7, 2023
    Inventors: Mei-Hsuan LIN, Rong Syuan FAN, Jen-Yuan CHANG
  • Publication number: 20180261461
    Abstract: A semiconductor device includes a substrate having a source feature and a drain feature therein configured to enhance charge mobility, a gate stack directly over a portion of the source feature and a portion of the drain feature, a first salicide layer over substantially the entire source feature exposed by the gate stack, and a second salicide layer over substantially the entire drain feature exposed by the gate stack. The first salicide layer has a germanium concentration greater than about 0% by weight and less than about 3% by weight. The second salicide layer has a germanium concentration greater than about 0% by weight and less than about 3% by weight.
    Type: Application
    Filed: May 16, 2018
    Publication date: September 13, 2018
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Patent number: 9978604
    Abstract: A method of forming a semiconductor device includes forming a gate stack over a first portion of a source and a first portion of a drain. The method includes depositing a first cap layer comprising silicon over a second portion of the source and depositing a second cap layer comprising silicon over a second portion of the drain. The method includes depositing a metal layer over the gate stack, the first cap layer and the second cap layer. The method includes annealing the semiconductor device until all of the silicon in the first and second cap layers reacts with metal from the metal layer, wherein the annealing causes metal from the metal layer to react with silicon in the first cap layer, the second cap layer, the source, and the drain. Annealing the semiconductor device includes forming a salicide layer having a germanium concentration less than 3% by weight.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 22, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Patent number: 9343318
    Abstract: A semiconductor device having a source feature and a drain feature formed in a substrate. The semiconductor device having a gate stack over a portion of the source feature and over a portion of the drain feature. The semiconductor device further having a first cap layer formed over substantially the entire source feature not covered by the gate stack, and a second cap layer formed over substantially the entire drain feature not covered by the gate stack. A method of forming a semiconductor device including forming a source feature and drain feature in a substrate. The method further includes forming a gate stack over a portion of the source feature and over a portion of the drain feature. The method further includes depositing a first cap layer over substantially the entire source feature not covered by the gate stack and a second cap layer over substantially the entire drain feature not covered by the gate stack.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 17, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Publication number: 20160093497
    Abstract: A method of forming a semiconductor device includes forming a gate stack over a first portion of a source and a first portion of a drain. The method includes depositing a first cap layer comprising silicon over a second portion of the source and depositing a second cap layer comprising silicon over a second portion of the drain. The method includes depositing a metal layer over the gate stack, the first cap layer and the second cap layer. The method includes annealing the semiconductor device until all of the silicon in the first and second cap layers reacts with metal from the metal layer, wherein the annealing causes metal from the metal layer to react with silicon in the first cap layer, the second cap layer, the source, and the drain. Annealing the semiconductor device includes forming a salicide layer having a germanium concentration less than 3% by weight.
    Type: Application
    Filed: December 3, 2015
    Publication date: March 31, 2016
    Inventors: Mei-Hsuan LIN, Chih-Hsun LIN, Ching-Hua CHU, Ling-Sung WANG
  • Patent number: 9209270
    Abstract: A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: December 8, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Publication number: 20150171189
    Abstract: A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
    Type: Application
    Filed: March 2, 2015
    Publication date: June 18, 2015
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Patent number: 9024391
    Abstract: A semiconductor structure includes a substrate, a shallow trench isolation (STI) structure embedded in the substrate, a stressor embedded in the substrate, and a conductive plug over and electrically coupled with the stressor. A same-material region is sandwiched by the STI structure and an entire sidewall of the stressor, and the same-material region is a continuous portion of the substrate.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang
  • Patent number: 8994097
    Abstract: A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: March 31, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang
  • Publication number: 20150041857
    Abstract: A semiconductor structure includes a substrate, a shallow trench isolation (STI) structure embedded in the substrate, a stressor embedded in the substrate, and a conductive plug over and electrically coupled with the stressor. A same-material region is sandwiched by the STI structure and an entire sidewall of the stressor, and the same-material region is a continuous portion of the substrate.
    Type: Application
    Filed: September 23, 2014
    Publication date: February 12, 2015
    Inventors: Mei-Hsuan LIN, Chih-Hsun LIN, Chih-Kang CHAO, Ling-Sung WANG
  • Patent number: 8846492
    Abstract: An embodiment of the disclosure includes a method of forming a semiconductor structure. A substrate has a region adjacent to a shallow trench isolation (STI) structure in the substrate. A patterned mask layer is formed over the substrate. The patterned mask layer covers the STI structure and a portion of the region, and leaves a remaining portion of the region exposed. A distance between an edge of the remaining portion and an edge of the STI structure is substantially longer than 1 nm. The remaining portion of the region is etched thereby forms a recess in the substrate. A stressor is epitaxially grown in the recess. A conductive plug contacting the stressor is formed.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: September 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang
  • Patent number: 8836088
    Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a conductive plug structure contacting a portion of an upper surface of the conductive feature, a first etch stop layer over another portion of the upper surface of the conductive feature, and a second etch stop layer over the first etch stop layer. The first etch stop layer is a doped etch stop layer. The first etch stop layer is to function as an etch stop layer during a predetermined etching process for etching the second etch stop layer.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang
  • Patent number: 8775982
    Abstract: The present disclosure provides an integrated circuit design method. In an example, a method includes receiving an integrated circuit design layout that includes an active region feature, a contact feature, and an isolation feature, wherein a portion of the active region feature is disposed between the contact feature and the isolation feature; determining whether a thickness of the portion of the active region feature disposed between the contact feature and the isolation feature is less than a threshold value; and modifying the integrated circuit design layout if the thickness is less than the threshold value, wherein the modifying includes adding a supplementary active region feature adjacent to the portion of the active region feature disposed between the contact feature and the isolation feature.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: July 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Chan Lu, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang, Jen-Pan Wang
  • Patent number: 8765545
    Abstract: A method of manufacturing a semiconductor device is disclosed. The exemplary method includes providing a substrate having a source region and a drain region. The method further includes forming a first recess in the substrate within the source region and a second recess in the substrate within the drain region. The first recess has a first plurality of surfaces and the second recess has a second plurality of surfaces. The method also includes epi-growing a semiconductor material in the first and second recesses and, thereafter, forming shallow isolation (STI) features in the substrate.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Kang Chao, Chih-Hsun Lin, Ling-Sung Wang
  • Publication number: 20130299987
    Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a conductive plug structure contacting a portion of an upper surface of the conductive feature, a first etch stop layer over another portion of the upper surface of the conductive feature, and a second etch stop layer over the first etch stop layer. The first etch stop layer is a doped etch stop layer. The first etch stop layer is to function as an etch stop layer during a predetermined etching process for etching the second etch stop layer.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 14, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mei-Hsuan LIN, Chih-Hsun LIN, Chih-Kang CHAO, Ling-Sung WANG
  • Publication number: 20130285194
    Abstract: The present disclosure provides an integrated circuit design method. In an example, a method includes receiving an integrated circuit design layout that includes an active region feature, a contact feature, and an isolation feature, wherein a portion of the active region feature is disposed between the contact feature and the isolation feature; determining whether a thickness of the portion of the active region feature disposed between the contact feature and the isolation feature is less than a threshold value; and modifying the integrated circuit design layout if the thickness is less than the threshold value, wherein the modifying includes adding a supplementary active region feature adjacent to the portion of the active region feature disposed between the contact feature and the isolation feature.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventors: Mei-Hsuan Lin, Chih-Chan Lu, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang, Jen-Pan Wang
  • Publication number: 20130267069
    Abstract: A method of manufacturing a semiconductor device is disclosed. The exemplary method includes providing a substrate having a source region and a drain region. The method further includes forming a first recess in the substrate within the source region and a second recess in the substrate within the drain region. The first recess has a first plurality of surfaces and the second recess has a second plurality of surfaces. The method also includes epi-growing a semiconductor material in the first and second recesses and, thereafter, forming shallow isolation (STI) features in the substrate.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 10, 2013
    Inventors: Mei-Hsuan Lin, Chih-Kang Chao, Chih-Hsun Lin, Ling-Sung Wang
  • Publication number: 20130234217
    Abstract: A device includes a semiconductor substrate, a gate stack over the semiconductor substrate, and a stressor region having at least a portion in the semiconductor substrate and adjacent to the gate stack. The stressor region includes a first stressor region having a first p-type impurity concentration, a second stressor region over the first stressor region, wherein the second stressor region has a second p-type impurity concentration, and a third stressor region over the second stressor region. The third stressor region has a third p-type impurity concentration. The second p-type impurity concentration is lower than the first and the third p-type impurity concentrations.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hsuan Lin, Chih-Hsun Lin, Ching-Hua Chu, Ling-Sung Wang