Patents by Inventor Mei Zhao

Mei Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9433703
    Abstract: A neural graft includes a biological substrate, a carbon nanotube structure and a neural network. The carbon nanotube structure is located on the biological substrate. The carbon nanotube structure includes a number of carbon nanotube wires crossed with each other to define a number of pores. The neural network includes a number of neural cell bodies and a number of neurites branched from the neural cell bodies. An effective diameter of each pore is larger than or equal to a diameter of the neural cell body, the neurites substantially extend along the carbon nanotube wires such that the neurites are patterned.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 6, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Chen Feng, Wen-Mei Zhao
  • Patent number: 9433801
    Abstract: A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes at least one conductor. The at least one conductor includes at least one carbon nanotube wire having a plurality of radioactive particles therein.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 6, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Qian, Chen Feng, Wen-Mei Zhao, Li Fan, Yu-Quan Wang, Liang Liu
  • Patent number: 9370607
    Abstract: A nerve graft includes a carbon nanotube structure, a hydrophilic layer, and a nerve network. The hydrophilic layer having a polar surface is located on a surface of the carbon nanotube structure. The nerve network positioned on the polar surface of the hydrophilic layer includes a number of neurons connecting with each other. The nerve network has a polarity. The polar surface of the hydrophilic layer has a polarity attracted to the polarity of the nerve network.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: June 21, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 9334474
    Abstract: A culture medium for growing at least one kind of cells is provided. The culture medium includes a carbon nanotube structure and a cell adhesion layer. The cell adhesion layer covers one surface of the carbon nanotube structure. The at least one kind of cells grows on the cell adhesion layer. In addition, a method for manufacturing a culture medium for growing at least one kind of cells is also provided.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 10, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Chen Feng, Wen-Mei Zhao
  • Patent number: 9309494
    Abstract: A method for making a nerve graft includes the following steps. A culture layer including a carbon nanotube film structure and a protein layer is provided. The protein layer is located on a surface of the carbon nanotube film structure. A number of nerve cells are seeded on a surface of the protein layer away from the carbon nanotube film structure. The nerve cells are cultured until a number of neurites branch from the nerve cells and are connected between the nerve cells.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: April 12, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Chen Feng, Wen-Mei Zhao
  • Patent number: 9295759
    Abstract: A nerve graft includes a carbon nanotube film structure, a protein layer, and a nerve network. The protein layer is located on a surface of the carbon nanotube film structure. The nerve network is positioned on a surface of the protein layer and far away from the carbon nanotube film structure.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: March 29, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Chen Feng, Wen-Mei Zhao
  • Patent number: 9299566
    Abstract: A method for forming a germanium-based layer is provided. The method includes: providing a substrate having a Ge or GeSi surface layer; and implanting atoms, molecules, ions or plasmas containing an element Sn into the Ge surface layer to form a Ge-based GeSn layer, or implanting atoms, molecules, ions or plasmas containing an element Sn into the GeSi surface layer to form a Ge-based GeSnSi layer, or co-implanting atoms, molecules, ions or plasmas containing elements Sn and Si into the Ge surface layer to form a Ge-based GeSnSi layer.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: March 29, 2016
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Lei Xiao, Jing Wang, Mei Zhao, Renrong Liang, Jun Xu
  • Patent number: 9272134
    Abstract: A pacemaker includes an electrode line having a lead and an electrode. The electrode includes a carbon nanotube composite structure having a matrix and a carbon nanotube structure located in the matrix. The matrix comprises a first surface and a second surface substantially perpendicular to the first surface. The carbon nanotube structure includes a first end electrically connect to the lead. The carbon nanotube structure is substantially parallel to the second surface of the matrix. A distance between the carbon nanotube structure and the second surface of the matrix is less than 10 micrometers.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 1, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yu-Quan Wang, Li Fan, Wen-Mei Zhao, Li Qian, Chen Feng, Liang Liu
  • Patent number: 9263660
    Abstract: A generator includes a heat-electricity transforming device and a heat collector. The heat-electricity transforming device is configured to transform heat into electricity. The heat collector includes at least one heat absorption module. The at least one heat absorption module includes a carbon nanotube structure. The at least one heat absorption module is connected to the heat-electricity transforming device and transfers heat to the heat-electricity transforming device.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 16, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Peng Liu, Wen-Mei Zhao, Li Qian, Liang Liu, Pi-jin Chen, Shou-Shan Fan
  • Patent number: 9248281
    Abstract: A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes a conductor, an insulation layer and a shielding layer. The insulation layer is located on an outer surface of the conductor. The shielding layer is located on an outer surface of the first insulation layer. The shielding layer is a carbon nanotube structure having a plurality of radioactive particles therein.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 2, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chen Feng, Li Qian, Li Fan, Wen-Mei Zhao, Liang Liu, Yu-Quan Wang
  • Patent number: 9233190
    Abstract: A culture medium includes a carbon nanotube structure and a hydrophilic layer. The culture medium is capable of culturing at least one neuron. The hydrophilic layer has a polar surface and is located on a surface of the carbon nanotube structure. The polar surface is located on a surface of the hydrophilic layer away from the carbon nanotube structure, and has a polarity attracted to a polarity of the at least one neuron.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: January 12, 2016
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 9205173
    Abstract: A nerve graft includes a lyophobic substrate, a carbon nanotube film structure, a protein layer, and a nerve network. The carbon nanotube film structure is located on a surface of the lyophobic substrate. The protein layer is located on a surface of the carbon nanotube film structure away from the lyophobic substrate. The nerve network is positioned on a surface of the protein layer away from the lyophobic substrate.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: December 8, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Chen Feng, Wen-Mei Zhao
  • Patent number: 9138577
    Abstract: An electrode lead of a pacemaker includes at least one lead wire. The at least one lead wire includes at least one conductive core, a first insulating layer coated on an outer surface of the at least one conductive core, at least one carbon nanotube yarn spirally wound on an outer surface of the first insulating layer, and a second insulating layer coated on the surface of the at least one carbon nanotube yarn. One end of the at least one conductive core protrudes from the first insulating layer to form a naked portion. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. A pacemaker includes a pulse generator and the electrode lead electrically connected with the pulse generator.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 22, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Liang Liu, Chen Feng, Li Qian, Yu-Quan Wang, Wen-Mei Zhao
  • Publication number: 20150243505
    Abstract: A method for forming a FinFET is provided, comprising: providing a substrate; forming a fin structure with a material Ge or GeSi on the substrate; forming a gate stack or a dummy gate on the substrate; defining a first region and a second region in the fin structure; and implanting atoms, molecules, ions or plasmas containing an element Sn into the first region and the second region in the fin structure with the material Ge to form a strained GeSn layer, or implanting atoms, molecules, ions or plasmas containing an element Sn into the first region and the second region in the fin structure with the material GeSi to form a strained GeSnSi layer, or co-implanting atoms, molecules, ions or plasmas containing elements Sn and Si into the first region and the second region in the fin structure with the material GeSi to form a strained GeSnSi layer.
    Type: Application
    Filed: March 21, 2014
    Publication date: August 27, 2015
    Applicant: Tsinghua University
    Inventors: Jing Wang, Lei Xiao, Mei Zhao, Reneong Liang, Jun Xu
  • Publication number: 20150243502
    Abstract: A method for forming a fin field effect transistor is provided. The method includes: providing a substrate; forming a fin structure with a material Ge or GeSi on the substrate; implanting atoms, molecules, ions or plasmas containing an element Sn into the fin structure with the material Ge or GeSi to form a Ge-based GeSn layer or a Ge-based GeSnSi layer; and forming a gate stack on the Ge-based GeSn layer or the Ge-based GeSnSi layer, the gate stack being oriented transversely to the fin structure.
    Type: Application
    Filed: March 18, 2014
    Publication date: August 27, 2015
    Inventors: Jing Wang, Lei Xiao, Mei Zhao, Renrong Liang, Jun Xu
  • Publication number: 20150243506
    Abstract: A method for forming a germanium-based layer is provided. The method includes: providing a substrate having a Ge or GeSi surface layer; and implanting atoms, molecules, ions or plasmas containing an element Sn into the Ge surface layer to form a Ge-based GeSn layer, or implanting atoms, molecules, ions or plasmas containing an element Sn into the GeSi surface layer to form a Ge-based GeSnSi layer, or co-implanting atoms, molecules, ions or plasmas containing elements Sn and Si into the Ge surface layer to form a Ge-based GeSnSi layer.
    Type: Application
    Filed: March 21, 2014
    Publication date: August 27, 2015
    Inventors: Lei Xiao, Jing Wang, Mei Zhao, Renrong Liang, Jun Xu
  • Patent number: 9114193
    Abstract: A method for culturing a number of cells includes the following steps. A culture medium is provided. The culture medium has a carbon nanotube structure and a hydrophilic layer. The hydrophilic layer is formed on a surface of the carbon nanotube structure. A polar layer is formed on a surface of the hydrophilic layer away from the carbon nanotube structure. The cells are seeded and cultured on the polar layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 25, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 9105475
    Abstract: A method for forming a fin field effect transistor is provided. The method includes: providing a substrate; forming a fin structure with a material Ge or GeSi on the substrate; implanting atoms, molecules, ions or plasmas containing an element Sn into the fin structure with the material Ge or GeSi to form a Ge-based GeSn layer or a Ge-based GeSnSi layer; and forming a gate stack on the Ge-based GeSn layer or the Ge-based GeSnSi layer, the gate stack being oriented transversely to the fin structure.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: August 11, 2015
    Assignee: TSINGHUA UNIVERSITY
    Inventors: Jing Wang, Lei Xiao, Mei Zhao, Renrong Liang, Jun Xu
  • Patent number: 9084884
    Abstract: The present disclosure relates to a method for making a pacemaker electrode lead. In the method, the conductive wire structure and the carbon nanotube structure are provided. A conductive material is combined with the carbon nanotube structure to form a carbon nanotube composite structure. The carbon nanotube composite structure is covered on surface of the conductive wire structure to form a conductive wire composite structure.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: July 21, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Fan, Wen-Mei Zhao, Liang Liu, Yu-Quan Wang, Li Qian, Chen Feng
  • Patent number: 9073753
    Abstract: A method for making a hydrophilic carbon nanotube film is provided. A reactor, an oxidative acid solution disposed in the reactor, and at least one primary carbon nanotube film are provided. The primary carbon nanotube film is set in the reactor disposed apart from the oxidative acid solution. The oxidative acid solution is then volatilized to form oxidative acid gas and the reactor is filled with the oxidative acid gas.
    Type: Grant
    Filed: December 25, 2010
    Date of Patent: July 7, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Zhi-Min Tao, Li Fan, Wen-Mei Zhao