Patents by Inventor Meijia WANG

Meijia WANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931708
    Abstract: Provided is a carbon dioxide fluidity control device comprising, a sample preparation tank, a high-pressure stirring unit, a reciprocating plunger pump and a booster pump, wherein the stirring unit comprises one or more high-pressure stirring tanks, each provided with an atomizing spray probe and a piston, wherein a discharge port of the sample preparation tank is connected to the atomizing spray probe via a plunger pump, which is connected to the piston to push the piston to reciprocate; the booster pump is connected to the high-pressure stirring tanks to provide supercritical carbon dioxide to the high-pressure stirring tank; and a discharge port of the high-pressure stirring tanks is connected to an oilfield well group. Provided is a carbon dioxide fluidity control method using the device, comprising mixing surfactants and nanoparticles with heated carbon dioxide, and injecting a microemulsion of supercritical carbon dioxide and nano-silicon dioxide into an oilfield well group.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: March 19, 2024
    Assignee: China University of Petroleum (East China)
    Inventors: Chao Zhang, Zhaomin Li, Songyan Li, Yong Wang, Guangzhong Lv, Shouya Wu, Linghui Xi, Meijia Wang
  • Publication number: 20210220784
    Abstract: Provided is a carbon dioxide fluidity control device comprising, a sample preparation tank, a high-pressure stirring unit, a reciprocating plunger pump and a booster pump, wherein the stirring unit comprises one or more high-pressure stirring tanks, each provided with an atomizing spray probe and a piston, wherein a discharge port of the sample preparation tank is connected to the atomizing spray probe via a plunger pump, which is connected to the piston to push the piston to reciprocate; the booster pump is connected to the high-pressure stirring tanks to provide supercritical carbon dioxide to the high-pressure stirring tank; and a discharge port of the high-pressure stirring tanks is connected to an oilfield well group. Provided is a carbon dioxide fluidity control method using the device, comprising mixing surfactants and nanoparticles with heated carbon dioxide, and injecting a microemulsion of supercritical carbon dioxide and nano-silicon dioxide into an oilfield well group.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 22, 2021
    Applicant: China University of Petroleum (East China)
    Inventors: Chao ZHANG, Zhaomin LI, Songyan LI, Yong WANG, Guangzhong LV, Shouya WU, Linghui XI, Meijia WANG
  • Publication number: 20190242225
    Abstract: A method for extracting tight oil includes the steps of performing several cycles of carbon dioxide huffing-puffing; selecting three adjacent cracks; installing a double-layered concentric oil tubing or two parallel oil tubes in a casing in the horizontal wellbore, and dividing space in the casing into an injection channel, an extraction channel a, and an extraction channel b; communicating the injection channel with the target injection crack; communicating the extraction channel a with the extraction crack a; and communicating the extraction channel b with the extraction crack b; injecting carbon dioxide from the wellbore into the injection channel, directing the crude oil into the extraction crack a and the extraction crack b from both sides of the target injection crack by carbon dioxide flooding and displacement, and extracting the crude oil along the extraction channel a and the extraction channel b.
    Type: Application
    Filed: November 18, 2018
    Publication date: August 8, 2019
    Inventors: Zhaomin LI, Shouya WU, Chao ZHANG, Binfei LI, Yuliang SU, Guangzhong LV, Meijia WANG