Patents by Inventor Meike Schneider

Meike Schneider has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11845688
    Abstract: The present disclosure relates to a lithium ion-conducting glass ceramic which comprises a residual glass phase that is also ion-conducting, a process for the production thereof as well as its use in a battery. The glass ceramic according to the present disclosure comprises a main crystal phase which is isostructural to the NaSICon crystal phase, wherein the composition can be described with the following formula: Li1+x?yMy5+Mx3+M2?x?y4+(PO4)3?, wherein x is greater than 0 and at most 1, as well as greater than y. Y may take values of between 0 and 1. Here, the following boundary condition has to be fulfilled: (1+x?y)>1. Here, M represents a cation with the valence of +3, +4 or +5. M3+ is selected from Al, Y, Sc or B, wherein at least Al as trivalent cation is present. Independently thereof, M4+ is selected from Ti, Si or Zr, wherein at least Ti as tetravalent cation is present. Independently thereof, M5+ is selected from Nb or Ta.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: December 19, 2023
    Assignee: SCHOTT AG
    Inventors: Meike Schneider, Andreas Roters, Jörg Schumacher, Rolf Samsinger
  • Patent number: 11724960
    Abstract: A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of ?1 to +1 ppm/Kin the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: August 15, 2023
    Assignee: SCHOTT AG
    Inventors: Evelin Weiss, Meike Schneider, Oliver Hochrein, Friedrich Siebers, Roland Dudek, Martin Mueller, Matthias Bockmeyer, Birgit Doerk
  • Publication number: 20230183128
    Abstract: A cover glass is provided that includes a silica based glass ceramic with a thickness between 0.4 mm and 0.85 mm. The glass ceramic has a transmittance of more than 80% from 380 nm to 780 nm and a stress attribute selected from: an overall compressive stress (CS) of at least 250 MPa and at most 1500 MPa, a compressive stress at a depth of 30 ?m (CS30) from one of the two faces of at least 160 MPa and at most 525 MPa, a depth of the compression layer (DoCL) of at least 0.2 times the thickness and less than 0.5 times the thickness, and any combinations thereof. The glass ceramic has at least one silica based crystal phase having in a near-surface layer a unit cell volume of at least 1% by volume larger than that of a core where the crystal phase has minimum stresses.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 15, 2023
    Applicants: SCHOTT AG, SCHOTT Technical Glass Solutions GmbH
    Inventors: Ruediger Dietrich, Meike SCHNEIDER, Jochen Alkemper, Lars Mueller, Thomas Pfeiffer, Julian Koch, Bernd Ruedinger
  • Publication number: 20230183127
    Abstract: A cover glass made of a glass ceramic that is silica based and has a main crystal phase of high quartz solid solution or keatite solid solution is provided. The cover glass has a stress profile with at least one inflection point at a depth of the cover glass of more than 10 ?m, a thickness from 0.1 mm to 2 mm, and a chemical tempering structure with a surface compressive stress of at least 250 MPa and at most 1500 MPa. A process for producing the cover glass is provided that includes producing a silica based green glass, hot shaping the silica based green glass, thermally treating the silica based green glass with a nucleation step and a ceramization step, and performing an ion exchange at an exchange bath temperature for a duration of time in an exchange bath.
    Type: Application
    Filed: December 12, 2022
    Publication date: June 15, 2023
    Applicants: SCHOTT AG, SCHOTT Technical Glass Solutions GmbH
    Inventors: Lars Mueller, Ruediger Dietrich, Thomas Pfeiffer, Julian Koch, Bernd Ruedinger, Meike Schneider, Jochen Alkemper
  • Publication number: 20230117230
    Abstract: A ceramic printing ink is provided that is suitable for application using an inkjet printing process to produce a coating on glass ceramics. The ink includes a glassy material of glass particles and pigment particles. The glass particles are present in a ratio of total weight to the pigment particles of at least 1.5 and less than 19. The glass particles have an equivalent diameter d90 ranging from at least 0.5 ?m to at most 5 ?m. The ink has an effective coefficient of linear thermal expansion, ?20-300,eff, in a range from 6.5*10?6/K to 11*10?6/K.
    Type: Application
    Filed: October 18, 2022
    Publication date: April 20, 2023
    Applicant: SCHOTT AG
    Inventors: Meike Schneider, Jochen Drewke, Stephanie Mangold, Ina Mitra
  • Publication number: 20230110781
    Abstract: A method for producing a conductive composite material for a battery such as a solid-state battery includes providing an ion-conducting electrolyte matrix that can be plasticized and that includes an ion-conducting first substance a base substance that can be plasticized and/or a polyelectrolyte; providing a second ion-conducting substance in the form of ion-conducting particles; introducing the ion-conducting particles into the electrolyte matrix to produce a mixture consisting of the ion-conducting particles and the electrolyte matrix; and homogenizing the mixture.
    Type: Application
    Filed: December 15, 2022
    Publication date: April 13, 2023
    Applicant: SCHOTT AG
    Inventors: Joerg SCHUHMACHER, Philipp TREIS, Meike SCHNEIDER, Andreas ROTERS, Rolf SAMSINGER, Sven SCHOPF, Arno KWADE
  • Publication number: 20220376297
    Abstract: A lithium-ion-conducting composite material and process of producing are provided. The composite material includes at least one polymer and lithium-ion-conducting particles. The particles have a sphericity ? of at least 0.7. The composite material includes at least 20 vol % of the particles for a polydispersity index PI of the particle size distribution of <0.7 or are present in at least 30 vol % of the composite material for the polydispersity index in a range from 0.7 to <1.2, or are present in at least 40 vol % of the composite material for the polydispersity index of >1.2.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 24, 2022
    Applicant: SCHOTT AG
    Inventors: Jörg Schuhmacher, Philipp Treis, Jochen Drewke, Hans-Joachim Schmitt, Rolf Samsinger, Andreas Roters, Meike Schneider, Yvonne Menke-Berg
  • Publication number: 20220328817
    Abstract: A powder with particulates of a lithium ion-conducting material has a conductivity of at least 10?5 S/cm. The powder has an inorganic carbon content (Total Inorganic Carbon Content (TIC)) of less than 0.4 wt % and/or an organic carbon content (Total Organic Carbon Content (TOC)) of less than 0.1 wt %. The particulates have a d50 particle size in a range from 0.05 ?m to 10 ?m. The particulates have a particle size distribution log (d90/d10) of less than 4.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 13, 2022
    Applicant: SCHOTT AG
    Inventors: Jörg Schuhmacher, Philipp Treis, Jochen Drewke, Hans-Joachim Schmitt, Rolf Samsinger, Andreas Roters, Meike Schneider
  • Patent number: 11424480
    Abstract: A lithium-ion-conducting composite material and process of producing are provided. The composite material includes at least one polymer and lithium-ion-conducting particles. The particles have a sphericity ? of at least 0.7. The composite material includes at least 20 vol % of the particles for a polydispersity index PI of the particle size distribution of <0.7 or are present in at least 30 vol % of the composite material for the polydispersity index in a range from 0.7 to <1.2, or are present in at least 40 vol % of the composite material for the polydispersity index of >1.2.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: August 23, 2022
    Assignee: SCHOTT AG
    Inventors: Jörg Schuhmacher, Philipp Treis, Jochen Drewke, Hans-Joachim Schmitt, Rolf Samsinger, Andreas Roters, Meike Schneider, Yvonne Menke-Berg
  • Publication number: 20220181679
    Abstract: The present disclosure relates to a lithium ion conductive material, preferably a lithium ion conductive glass ceramic, the material including a garnet-type crystalline phase content and an amorphous phase content. The material has a sintering temperature of 1000° C. or lower, preferably 950° C. or lower and an ion conductivity of at least 1*10?5 S/cm, preferably at least 2*10?5 S/cm, preferably at least 5*10?5 S/cm, preferably at least 1*10?4 S/cm, and the amorphous phase content includes boron and/or a composition including boron.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Applicant: SCHOTT AG
    Inventors: Meike SCHNEIDER, Sebastian LEUKEL, Jörg SCHUHMACHER, Andreas ROTERS, Wolfgang SCHMIDBAUER
  • Patent number: 11342582
    Abstract: A lithium-ion-conducting composite material is provided that includes at least one polymer and lithium-ion-conducting particles. The interfacial resistance for the lithium-ion conductivity between the polymer and the particles is reduced as a result of a surface modification of the particles and therefore the lithium-ion conductivity is greater than for a comparable composite material wherein the interfacial resistance between the polymer and the particles is not reduced.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 24, 2022
    Assignee: SCHOTT AG
    Inventors: Joerg Schuhmacher, Jochen Drewke, Hans-Joachim Schmitt, Philipp Treis, Miriam Kunze, Andreas Roters, Meike Schneider
  • Publication number: 20220140387
    Abstract: The present disclosure relates to a method for producing a solid electrolyte comprising lithium-ion conductive glass-ceramics. The method includes the steps of: providing at least one lithium ion conductor having a ceramic phase content and amorphous phase content; providing a powder of said at least one lithium ion conductor, the powder having a polydispersity index between 0.5 and 1.5, more preferably between 0.8 and 1.3, and most preferably between 0.85 and 1.15; and at least one of a) incorporating the powder into a polymer electrolyte or a polyelectrolyte and b) forming an element using the powder.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Applicant: SCHOTT AG
    Inventors: Jörg SCHUHMACHER, Meike SCHNEIDER, Wolfgang SCHMIDBAUER, Sebastian LEUKEL, Andreas ROTERS, Martin LETZ, Rolf SAMSINGER
  • Publication number: 20220037694
    Abstract: A sintering aid mixture for sintering solid-state ion conductors, electrode materials, or the like for solid-state batteries is provided. The mixture includes at least one sol-gel precursor and/or at least one sol-gel direct precursor produced from at least one sol-gel precursor.
    Type: Application
    Filed: August 2, 2021
    Publication date: February 3, 2022
    Applicant: SCHOTT AG
    Inventors: Jörg SCHUHMACHER, Miriam KUNZE, Hans-Joachim SCHMITT, Philipp TREIS, Meike SCHNEIDER, Andreas ROTERS, Jochen DREWKE
  • Publication number: 20210403372
    Abstract: The present disclosure relates to a lithium ion-conducting glass ceramic which comprises a residual glass phase that is also ion-conducting, a process for the production thereof as well as its use in a battery. The glass ceramic according to the present disclosure comprises a main crystal phase which is isostructural to the NaSICon crystal phase, wherein the composition can be described with the following formula: Li1+x?yMy5+Mx3+M2?x?y4+(PO4)3, wherein x is greater than 0 and at most 1, as well as greater than y. Y may take values of between 0 and 1. Here, the following boundary condition has to be fulfilled: (1+x?y)>1. Here, M represents a cation with the valence of +3, +4 or +5. M3+ is selected from Al, Y, Sc or B, wherein at least Al as trivalent cation is present. Independently thereof, M4+ is selected from Ti, Si or Zr, wherein at least Ti as tetravalent cation is present. Independently thereof, M5+ is selected from Nb, Ta or La.
    Type: Application
    Filed: September 13, 2021
    Publication date: December 30, 2021
    Inventors: Meike Schneider, Andreas Roters, Jörg Schumacher, Rolf Samsinger
  • Publication number: 20210344039
    Abstract: The disclosure relates to an aluminum-doped lithium ion conductor based on a garnet structure comprising lanthanum, in particular an aluminum-doped lithium lanthanum zirconate (LLZO), in which the latter is co-doped with at least one trivalent M3+ ion on the lanthanum site, and in which the trivalent M3+ ion has an ionic radius that is smaller than that of La3+, and a higher lithium content is present in comparison to a stoichiometric garnet structure, with the provision that if M3+ is yttrium, a further trivalent M3+ ion, which is different than Y3+ and has an ionic radius that is smaller than that of La3+, is co-doped on the lanthanum site. A co-doping strategy is carried out, in which a doping on the lanthanum site with ions of the same valence, but smaller diameter brings about the change in the lattice geometry to the cubic modification. This leads to a stabilization of the cubic crystal modification that is present also with superstoichiometric quantities of lithium.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 4, 2021
    Applicant: SCHOTT AG
    Inventors: Sebastian Leukel, Meike Schneider, Andreas Roters, Jörg Schumacher, Wolfgang Schmidbauer, Bernd Rüdinger
  • Publication number: 20210317033
    Abstract: A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of ?1 to +1 ppm/Kin the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
    Type: Application
    Filed: June 22, 2021
    Publication date: October 14, 2021
    Applicant: SCHOTT AG
    Inventors: Evelin Weiss, Meike Schneider, Oliver Hochrein, Friedrich Siebers, Roland Dudek, Martin Mueller, Matthias Bockmeyer, Birgit Doerk
  • Patent number: 11136261
    Abstract: The present disclosure relates to a lithium ion-conducting glass ceramic which comprises a residual glass phase that is also ion-conducting, a process for the production thereof as well as its use in a battery. The glass ceramic according to the present disclosure comprises a main crystal phase which is isostructural to the NaSICon crystal phase, wherein the composition can be described with the following formula: Li1+x?yMy5+Mx3+M2?x?y4+(PO4)3, wherein x is greater than 0 and at most 1, as well as greater than y. Y may take values of between 0 and 1. Here, the following boundary condition has to be fulfilled: (1+x?y)>1. Here, M represents a cation with the valence of +3, +4 or +5. M3+ is selected from Al, Y, Sc or B, wherein at least Al as trivalent cation is present. Independently thereof, M4+ is selected from Ti, Si or Zr, wherein at least Ti as tetravalent cation is present. Independently thereof, M5+ is selected from Nb, Ta or La.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: October 5, 2021
    Assignee: SCHOTT AG
    Inventors: Meike Schneider, Andreas Roters, Jörg Schumacher, Rolf Samsinger
  • Patent number: 11072557
    Abstract: A transparent colored glass ceramic, in particular an LAS glass ceramic, suitable for use as a cooking surface is provided. The transparent colored glass ceramic includes high-quartz solid solution (HQ s.s.) as a main crystal phase and exhibits thermal expansion of ?1 to +1 ppm/K in the range from 20° C. to 700° C. The glass ceramic has from 3.0 to 3.6 percent by weight of lithium oxide (Li2O) as constituents and either is colored with 0.003 to 0.05 percent by weight of vanadium oxide (V2O5) or is colored with 0.003 to 0.25 percent by weight of molybdenum oxide (MoO3).
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: July 27, 2021
    Assignee: SCHOTT AG
    Inventors: Evelin Weiss, Meike Schneider, Oliver Hochrein, Friedrich Siebers, Roland Dudek, Martin Mueller, Matthias Bockmeyer, Birgit Doerk
  • Patent number: 10899648
    Abstract: A glass ceramic containing lithium-ions and having a garnet-like main crystal phase having an amorphous proportion of at least 5% is disclosed. The garnet-like main crystal phase preferably has the chemical formula Li7+x?yMxIIM3?xIIIM2?yIVMyVO12, wherein MII is a bivalent cation, MIII is a trivalent cation, MIV is a tetravalent cation, MV is a pentavalent cation. The glass ceramic is prepared by a melting technology preferably within a Skull crucible and has an ion conductivity of at least 5·10?5 S/cm, preferably of at least 1·10?4 S/cm.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 26, 2021
    Assignee: SCHOTT AG
    Inventors: Meike Schneider, Oliver Hochrein, Wolfgang Schmidbauer, Miriam Kunze
  • Patent number: 10847833
    Abstract: The present invention relates to a lithium-sulfur electrochemical cell comprising as component (A) an electrode comprising lithium metal or lithium alloy, and lithium ion conductively connected thereto as component (B) a glass ceramic membrane comprising an amorphous phase, as component (C) a liquid electrolyte comprising at least one solvent and at least one lithium salt, as component (D) an electrode comprising sulfur as a cathode active species. The present invention also relates to battery comprising a lithium-sulfur electrochemical cell as defined herein. The present invention further relates to the use of a glass ceramic membrane as defined herein as a separator in (i) a lithium-sulfur electrochemical cell, or (ii) a battery comprising at least one lithium-sulfur electrochemical cell.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 24, 2020
    Assignees: Sion Power Corporation, BASF SE, SCHOTT AG
    Inventors: Christine Bunte, Miriam Kunze, Meike Schneider, Wolfgang Schmidbauer