Patents by Inventor Meiqing Shen

Meiqing Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10512897
    Abstract: The present invention involves micron-scale cerium oxide particles having a multi-cores single-shell structure, comprising: a cerium oxide shell, the shell being composed of crystalline and/or amorphous nano-scale cerium oxide particles; and a plurality of nano-scale cerium oxide grain cores aggregates located in the interior of the shell. Also involved is a preparation method for the micron-scale cerium oxide particle having a multi-cores single-shell structure. A supported catalyst with the micron-scale cerium oxide particles according to the invention as the support have good hydrothermal stability and good sulfur resistance, and the active components of the supported catalyst are not easily embedded, and the supported catalyst has a great application prospect in the field of catalytic oxidation of exhaust emissions such as CO, NO or volatile organic compounds.
    Type: Grant
    Filed: February 15, 2015
    Date of Patent: December 24, 2019
    Assignee: TIANJIN UNIVERSITY
    Inventors: Meiqing Shen, Jun Wang, Jianqiang Wang, Guangxi Wei
  • Publication number: 20180029012
    Abstract: The present invention involves micron-scale cerium oxide particles having a multi-cores single-shell structure, comprising: a cerium oxide shell, the shell being composed of crystalline and/or amorphous nano-scale cerium oxide particles; and a plurality of nano-scale cerium oxide grain cores aggregates located in the interior of the shell. Also involved is a preparation method for the micron-scale cerium oxide particle having a multi-cores single-shell structure. A supported catalyst with the micron-scale cerium oxide particles according to the invention as the support have good hydrothermal stability and good sulfur resistance, and the active components of the supported catalyst are not easily embedded, and the supported catalyst has a great application prospect in the field of catalytic oxidation of exhaust emissions such as CO, NO or volatile organic compounds.
    Type: Application
    Filed: February 15, 2015
    Publication date: February 1, 2018
    Inventors: Meiqing SHEN, Jun WANG, Jianqiang WANG, Guangxi WEI
  • Patent number: 8765092
    Abstract: A non-stoichiometric perovskite oxide having the general chemical formula LaXMnOY, in which the molar ratio of lanthanum to manganese (“X”) ranges from 0.85 to 0.95, can be used in particle form as an oxidation catalyst to oxidize NO to NO2 in an exhaust aftertreatment system for a hydrocarbon-fueled engine. The oxygen content (“Y”) fluctuates with variations in the molar ratio of lanthanum to manganese but generally falls somewhere in the range of 3.0 to 3.30. The crystal lattice adjustments spurred by the non-stoichiometric molar ratio of lanthanum to manganese are believed responsible for an enhanced NO oxidative activity relative to similar perovskite oxides with a higher molar ratio of lanthanum and manganese.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 1, 2014
    Assignees: GM Global Technology Operations LLC, Tianjin University
    Inventors: Gongshin Qi, Wei Li, Xinquan Wang, Meiqing Shen
  • Publication number: 20120304624
    Abstract: A non-stoichiometric perovskite oxide having the general chemical formula LaXMnOY, in which the molar ratio of lanthanum to manganese (“X”) ranges from 0.85 to 0.95, can be used in particle form as an oxidation catalyst to oxidize NO to NO2 in an exhaust aftertreatment system for a hydrocarbon-fueled engine. The oxygen content (“Y”) fluctuates with variations in the molar ratio of lanthanum to manganese but generally falls somewhere in the range of 3.0 to 3.30. The crystal lattice adjustments spurred by the non-stoichiometric molar ratio of lanthanum to manganese are believed responsible for an enhanced NO oxidative activity relative to similar perovskite oxides with a higher molar ratio of lanthanum and manganese.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 6, 2012
    Applicants: TIANJIN UNIVERSITY, GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: GONGSHIN QI, Wei Li, Xinquan Wang, Meiqing Shen