Patents by Inventor Meir Gazit

Meir Gazit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200144919
    Abstract: A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 7, 2020
    Inventors: Amir Fishelov, Meir Gazit, Nikolay Radimov
  • Patent number: 10644589
    Abstract: A distributed power system wherein a plurality of power converters are connected in parallel and share the power conversion load according to a prescribed function, but each power converter autonomously determines its share of power conversion. Each power converter operates according to its own power conversion formula/function, such that overall the parallel-connected converters share the power conversion load in a predetermined manner.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 5, 2020
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinski, Yaron Binder
  • Publication number: 20200136523
    Abstract: A power conversion system including a first converter configured to convert an input voltage into a plurality of discrete voltages. A second converter configured to convert the plurality of discrete voltages into a plurality of modulated voltages. Each modulated voltage of the plurality of modulated voltages comprises two voltage levels equal, respectively, to two of the discrete voltages of the plurality of discrete voltages. A selection unit configured to alternatively output each modulated voltage of the plurality of modulated voltages across a pair of output terminals.
    Type: Application
    Filed: October 22, 2019
    Publication date: April 30, 2020
    Inventors: Meir Gazit, Menashe Walsh
  • Patent number: 10628897
    Abstract: Various implementations described herein are directed to systems, apparatuses and methods for operating stand-alone power systems. The systems may include power generators (e.g., photovoltaic generators and/or wind turbines), storage devices (e.g., batteries and/or flywheels), power modules (e.g., power converters) and loads. The methods may include various methods for monitoring, determining, controlling and/or predicting system power generation, system power storage and system power consumption.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: April 21, 2020
    Assignee: Solaredge Technologies Ltd.
    Inventors: Ilan Yoscovich, Meir Gazit, Yoav Galin
  • Publication number: 20200119632
    Abstract: A photovoltaic power generation system, having a photovoltaic panel, which has a direct current (DC) output and a micro-inverter with input terminals and output terminals. The input terminals are adapted for connection to the DC output. The micro-inverter is configured for converting an input DC power received at the input terminals to an output alternating current (AC) power at the output terminals. A bypass current path between the output terminals may be adapted for passing current produced externally to the micro-inverter. The micro-inverter is configured to output an alternating current voltage significantly less than a grid voltage.
    Type: Application
    Filed: December 10, 2019
    Publication date: April 16, 2020
    Inventors: Ilan Yoscovich, Meir Gazit, Tzachi Glovinsky, Yoav Galin
  • Publication number: 20200119688
    Abstract: A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
    Type: Application
    Filed: January 27, 2011
    Publication date: April 16, 2020
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinsky, Yaron Binder
  • Publication number: 20200014202
    Abstract: A circuit for combining direct current (DC) power including multiple direct current (DC) voltage inputs; multiple inductive elements. The inductive elements are adapted for operatively connecting respectively to the DC voltage inputs. Multiple switches connect respectively with the inductive elements. A controller is configured to switch the switches periodically at a frequency sufficiently high so that direct currents flowing through the inductive elements are substantially zero. A direct current voltage output is connected across one of the DC voltage inputs and a common reference to both the inputs and the output.
    Type: Application
    Filed: September 19, 2019
    Publication date: January 9, 2020
    Inventors: Meir Gazit, Tzachi Glovinsky
  • Patent number: 10522994
    Abstract: Methods for arc detection in a system including one or more photovoltaic generators, one or more photovoltaic power devices and a system power device and/or a load connectible to the photovoltaic generators and/or the photovoltaic power devices. The methods measure voltage, voltage noise and/or power delivered to the load or system power device. The methods may compare one or more measurements, an aggregation of measurements and/or values estimated from the measurements to one or more thresholds, and upon a comparison indicating a potential arcing condition, an alarm condition may be set. Embodiments include an arrangement of photovoltaic generators and photovoltaic power devices for reduced-impedance voltage loops which may enhance arc-detection capabilities.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: December 31, 2019
    Assignee: Solaredge Technologies Ltd.
    Inventors: Ilan Yoscovich, Guy Sella, Meir Gazit, Yoav Galin, David Braginsky, Lior Handelsman, Meir Adest, Yakir Loewenstern, Tzachi Glovinsky
  • Patent number: 10516336
    Abstract: A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: December 24, 2019
    Assignee: Solaredge Technologies Ltd.
    Inventors: Amir Fishelov, Meir Gazit, Nikolay Radimov
  • Publication number: 20190348946
    Abstract: A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 14, 2019
    Inventors: Guy Sella, Lior Handelsman, Vadim Shmukler, Meir Adest, Meir Gazit, Yoav Galin
  • Patent number: 10468878
    Abstract: A circuit for combining direct current (DC) power including multiple direct current (DC) voltage inputs; multiple inductive elements. The inductive elements are adapted for operatively connecting respectively to the DC voltage inputs. Multiple switches connect respectively with the inductive elements. A controller is configured to switch the switches periodically at a frequency sufficiently high so that direct currents flowing through the inductive elements are substantially zero. A direct current voltage output is connected across one of the DC voltage inputs and a common reference to both the inputs and the output.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: November 5, 2019
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Gazit, Tzachi Glovinsky
  • Patent number: 10461687
    Abstract: A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: October 29, 2019
    Assignee: Solaredge Technologies Ltd.
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinsky, Yaron Binder
  • Publication number: 20190326854
    Abstract: A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 24, 2019
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinsky, Yaron Binder
  • Patent number: 10411644
    Abstract: A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: September 10, 2019
    Assignee: Solaredge Technologies, Ltd.
    Inventors: Guy Sella, Lior Handelsman, Vadim Shmukler, Meir Adest, Meir Gazit, Yoav Galin
  • Publication number: 20190173424
    Abstract: A method for testing a photovoltaic panel connected to an electronic module. The electronic module includes an input attached to the photovoltaic panel and a power output. The method activates a bypass to the electronic module. The bypass provides a low impedance path between the input and the output of the electronic module. A current is injected into the electronic module thereby compensating for the presence of the electronic module during the testing. The current may be previously determined by measuring a circuit parameter of the electronic module. The circuit parameter may be impedance, inductance, resistance or capacitance.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinsky, Yaron Binder
  • Publication number: 20190149037
    Abstract: A protection method in a distributed power system including of DC power sources and multiple power modules which include inputs coupled to the DC power sources. The power modules include outputs coupled in series with one or more other power modules to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the string and produces output power. When the inverter stops production of the output power, each of the power modules is shut down and thereby the power input to the inverter is ceased.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit
  • Publication number: 20190149036
    Abstract: A distributed power system including multiple DC power sources and multiple power modules. The power modules include inputs coupled respectively to the DC power sources and outputs coupled in series to form a serial string. An inverter is coupled to the serial string. The inverter converts power input from the serial string to output power. A signaling mechanism between the inverter and the power module is adapted for controlling operation of the power modules.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Yaron Binder
  • Publication number: 20190097531
    Abstract: A distributed power system wherein a plurality of power converters are connected in parallel and share the power conversion load according to a prescribed function, but each power converter autonomously determines its share of power conversion. Each power converter operates according to its own power conversion formula/function, such that overall the parallel-connected converters share the power conversion load in a predetermined manner.
    Type: Application
    Filed: April 20, 2018
    Publication date: March 28, 2019
    Inventors: Meir Adest, Guy Sella, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Tzachi Glovinski, Yaron Binder
  • Publication number: 20190080346
    Abstract: A method of signaling between a photovoltaic module and an inverter module. The inverter module is connected to the photovoltaic module. In an initial mode of operation an initial code is modulated thereby producing an initial signal. The initial signal is transmitted from the inverter module to the photovoltaic module. The initial signal is received by the photovoltaic module. The operating mode is then changed to a normal mode of power conversion, and during the normal mode of operation a control signal is transmitted from the inverter to the photovoltaic module. A control code is demodulated and received from the control signal. The control code is compared with the initial code producing a comparison. The control command of the control signal is validated as a valid control command from the inverter module with the control command only acted upon when the comparison is a positive comparison.
    Type: Application
    Filed: April 10, 2018
    Publication date: March 14, 2019
    Inventors: Guy Sella, Meir Adest, Lior Handelsman, Yoav Galin, Amir Fishelov, Meir Gazit, Ilan Yoscovich, Yaron Binder
  • Publication number: 20190036455
    Abstract: A digital average-input current-mode control loop for a DC/DC power converter. The power converter may be, for example, a buck converter, boost converter, or cascaded buck-boost converter. The purpose of the proposed control loop is to set the average converter input current to the requested current. Controlling the average input current can be relevant for various applications such as power factor correction (PFC), photovoltaic converters, and more. The method is based on predicting the inductor current based on measuring the input voltage, the output voltage, and the inductor current. A fast cycle-by-cycle control loop may be implemented. The conversion method is described for three different modes. For each mode a different control loop is used to control the average input current, and the control loop for each of the different modes is described. Finally, the algorithm for switching between the modes is disclosed.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Amir Fishelov, Meir Gazit, Nikolay Radimov