Patents by Inventor Meisam Bahadori

Meisam Bahadori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953800
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: April 9, 2024
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ajay Mistry, Meisam Bahadori, Alexander Rylyakov, Rafid Sukkar, Matthew Streshinsky
  • Publication number: 20230251546
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 10, 2023
    Inventors: Ajay Mistry, Meisam Bahadori, Alexander Rylyakov, Rafid Sukkar, Matthew Streshinsky
  • Patent number: 11693180
    Abstract: An apparatus such as an optical modulator includes a buried oxide layer is disposed on a substrate. A microring resonator and an optical waveguide are disposed on the buried oxide layer and within a bonded semiconductor layer. The optical waveguide is optically coupled to the microring resonator and inputs a first optical wave into the microring resonator. An oxide layer is deposited on top of the optical waveguide and the microring resonator. A set of electrodes is disposed adjacent to the microring resonator, and in response to an electrical signal, the set of electrodes modulates the first optical wave into a modulated optical wave of transverse magnetic polarization within the microring resonator and outputs the modulated optical wave to the optical waveguide.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: July 4, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Meisam Bahadori, Songbin Gong, Lynford L. Goddard
  • Patent number: 11327384
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: May 10, 2022
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ajay Mistry, Meisam Bahadori, Matthew Streshinsky, Yangjin Ma
  • Publication number: 20220043321
    Abstract: An optical resonant modulator based on coupling modulation, comprising a resonant structure with an embedded Mach-Zehnder interferometer that is differentially driven to induced amplitude modulation at the output port. The principle of coupling modulation enables high data/baud rates to be achieved in a photonic integrated circuit, e.g. silicon, footprint that is considerably smaller than that of a conventional traveling-wave Mach-Zehnder modulator, in particular by utilizing space saving features, such as ring resonator phase shifters and bend waveguide arms.
    Type: Application
    Filed: August 10, 2020
    Publication date: February 10, 2022
    Inventors: Ajay MISTRY, Meisam BAHADORI, Matthew STRESHINSKY, Yangjin MA
  • Publication number: 20220026634
    Abstract: An apparatus such as an optical modulator includes a buried oxide layer is disposed on a substrate. A microring resonator and an optical waveguide are disposed on the buried oxide layer and within a bonded semiconductor layer. The optical waveguide is optically coupled to the microring resonator and inputs a first optical wave into the microring resonator. An oxide layer is deposited on top of the optical waveguide and the microring resonator. A set of electrodes is disposed adjacent to the microring resonator, and in response to an electrical signal, the set of electrodes modulates the first optical wave into a modulated optical wave of transverse magnetic polarization within the microring resonator and outputs the modulated optical wave to the optical waveguide.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 27, 2022
    Inventors: Meisam Bahadori, Songbin Gong, Lynford L. Goddard