Patents by Inventor Melanie J. Sherony

Melanie J. Sherony has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160027713
    Abstract: Embodiments of the present invention disclose a semiconductor structure and method for establishing a thermal profile across a semiconductor chip. In certain embodiments, the semiconductor structure comprises a through-silicon via formed in a first semiconductor chip having thermal control circuitry, wherein the through-silicon via is formed in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, and wherein the through-silicon via conducts heat from the thermal control circuitry to the region. In other embodiments, the method comprises forming a through-silicon via in a first semiconductor chip having thermal control circuitry. The method also comprises forming the through-silicon via in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, wherein the through-silicon via conducts heat from the thermal control circuitry to the region.
    Type: Application
    Filed: September 22, 2015
    Publication date: January 28, 2016
    Inventors: TERENCE B. HOOK, CHRISTOPHER M. SCHNABEL, MELANIE J. SHERONY
  • Patent number: 9178495
    Abstract: Embodiments of the present invention disclose a semiconductor structure and method for establishing a thermal profile across a semiconductor chip. In certain embodiments, the semiconductor structure comprises a through-silicon via formed in a first semiconductor chip having thermal control circuitry, wherein the through-silicon via is formed in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, and wherein the through-silicon via conducts heat from the thermal control circuitry to the region. In other embodiments, the method comprises forming a through-silicon via in a first semiconductor chip having thermal control circuitry. The method also comprises forming the through-silicon via in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, wherein the through-silicon via conducts heat from the thermal control circuitry to the region.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: November 3, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Terence B. Hook, Christopher M. Schnabel, Melanie J. Sherony
  • Publication number: 20150270828
    Abstract: Embodiments of the present invention disclose a semiconductor structure and method for establishing a thermal profile across a semiconductor chip. In certain embodiments, the semiconductor structure comprises a through-silicon via formed in a first semiconductor chip having thermal control circuitry, wherein the through-silicon via is formed in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, and wherein the through-silicon via conducts heat from the thermal control circuitry to the region. In other embodiments, the method comprises forming a through-silicon via in a first semiconductor chip having thermal control circuitry. The method also comprises forming the through-silicon via in a manner to be thermally coupled to the thermal control circuitry and a region of a second semiconductor chip, wherein the through-silicon via conducts heat from the thermal control circuitry to the region.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: INTERNTIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence B. Hook, Christopher M. Schnabel, Melanie J. Sherony
  • Patent number: 9064824
    Abstract: Methods for packaging a functional chip, methods for annealing a functional chip, and chip assemblies. A functional chip and an annealing chip are located inside a package. The functional chip includes an integrated circuit. The annealing chip includes an annealing element source comprised of an annealing element or a light source configured to emit electromagnetic radiation. The integrated circuit of the functional chip receives the annealing element, electromagnetic radiation, or both from the annealing chip in order to perform an annealing procedure that extends the useful lifetime of the packaged integrated circuit.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: June 23, 2015
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Melanie J. Sherony, Christopher M. Schnabel
  • Patent number: 9059120
    Abstract: Methods and structures for restoring an electrical parameter of a field-effect transistor in an integrated circuit deployed in an end product. A source, a drain, and a gate electrode of a field-effect transistor are coupled with ground. A restoration voltage is applied to a well beneath the field-effect transistor while the source, the drain, and the gate electrode of the field-effect transistor are coupled with ground. The well may be coupled with either a positive supply voltage or ground when a switch is in a first position during normal operation of the integrated circuit and with the restoration voltage when the switch is in a second position during a relaxation operation.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Melanie J. Sherony, Christopher M. Schnabel
  • Publication number: 20150129898
    Abstract: Methods for packaging a functional chip, methods for annealing a functional chip, and chip assemblies. A functional chip and an annealing chip are located inside a package. The functional chip includes an integrated circuit. The annealing chip includes an annealing element source comprised of an annealing element or a light source configured to emit electromagnetic radiation. The integrated circuit of the functional chip receives the annealing element, electromagnetic radiation, or both from the annealing chip in order to perform an annealing procedure that extends the useful lifetime of the packaged integrated circuit.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Applicant: International Business Machines Corporation
    Inventors: Terence B. Hook, Melanie J. Sherony, Christopher M. Schnabel
  • Publication number: 20150132862
    Abstract: Methods and structures for restoring an electrical parameter of a field-effect transistor in an integrated circuit deployed in an end product. A source, a drain, and a gate electrode of a field-effect transistor are coupled with ground. A restoration voltage is applied to a well beneath the field-effect transistor while the source, the drain, and the gate electrode of the field-effect transistor are coupled with ground. The well may be coupled with either a positive supply voltage or ground when a switch is in a first position during normal operation of the integrated circuit and with the restoration voltage when the switch is in a second position during a relaxation operation.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 14, 2015
    Applicant: International Business Machines Corporation
    Inventors: Terence B. Hook, Melanie J. Sherony, Christopher M. Schnabel
  • Patent number: 8564074
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including: a high-K dielectric region; a blocking region disposed against at least one surface of the high-K dielectric region and adapted to form an oxidized layer in response to exposure to oxygen; and an oxygen rich region disposed against the blocking region such that the blocking region is interposed between the oxygen rich region and the high-K dielectric region.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Terence B. Hook, Vijay Narayanan, Jay M. Shah, Melanie J. Sherony, Kenneth J. Stein, Helen H. Wang, Chendong Zhu
  • Publication number: 20130134545
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including: a high-K dielectric region; a blocking region disposed against at least one surface of the high-K dielectric region and adapted to form an oxidized layer in response to exposure to oxygen; and an oxygen rich region disposed against the blocking region such that the blocking region is interposed between the oxygen rich region and the high-K dielectric region.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Terence B. Hook, Vijay Narayanan, Jay M. Shah, Melanie J. Sherony, Kenneth J. Stein, Helen H. Wang, Chendong Zhu
  • Patent number: 8445969
    Abstract: An integrated circuit structure comprises at least one pair of complementary transistors on a substrate. The pair of complementary transistors includes a first transistor and a second transistor. In addition, only one stress-producing layer is on the first transistor and the second transistor and applies tensile strain force on the first transistor and the second transistor. The first transistor has a first channel region, a gate insulator on the first channel region, and a deuterium region between the first channel region and the gate insulator. The second transistor has a germanium doped channel region, as well as the same gate insulator on the germanium doped channel region, and the same deuterium region between the germanium doped channel region and the gate insulator.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 21, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xiangdong Chen, Laegu Kang, Weipeng Li, Dae-Gyu Park, Melanie J. Sherony
  • Publication number: 20120273894
    Abstract: An integrated circuit structure comprises at least one pair of complementary transistors on a substrate. The pair of complementary transistors includes a first transistor and a second transistor. In addition, only one stress-producing layer is on the first transistor and the second transistor and applies tensile strain force on the first transistor and the second transistor. The first transistor has a first channel region, a gate insulator on the first channel region, and a deuterium region between the first channel region and the gate insulator. The second transistor has a germanium doped channel region, as well as the same gate insulator on the germanium doped channel region, and the same deuterium region between the germanium doped channel region and the gate insulator.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xiangdong Chen, Laegu Kang, Weipeng Li, Dae-Gyu Park, Melanie J. Sherony
  • Patent number: 8106462
    Abstract: An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 31, 2012
    Assignees: International Business Machines Corporation, Freescale Semiconductor, Inc., Infineon Technologies North America Corp., Chartered Semiconductor Manufacturing Ltd.
    Inventors: Xiangdong Chen, Weipeng Li, Anda C. Mocuta, Dae-Gyu Park, Melanie J. Sherony, Kenneth J. Stein, Haizhou Yin, Franck Arnaud, Jin-Ping Han, Laegu Kang, Yong Meng Lee, Young Way Teh, Voon-Yew Thean, Da Zhang
  • Publication number: 20110169096
    Abstract: An integrated circuit structure includes a substrate and at least one pair of complementary transistors on or in the substrate. The pair of complementary transistors comprises a first transistor and a second transistor. The structure also includes a first stress-producing layer on the first transistor and the second transistor, and a second stress-producing layer on the first stress-producing layer over the first transistor and the second transistor. The first stress-producing layer applies tensile strain force on the first transistor and the second transistor. The second stress-producing layer applies compressive strain force on the first stress-producing layer, the first transistor, and the second transistor.
    Type: Application
    Filed: January 14, 2010
    Publication date: July 14, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, FREESCALE SEMICONDUCTOR, INC., INFINEON TECHNOLOGIES NORTH AMERICA CORP., CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Xiangdong Chen, Weipeng Li, Anda C. Mocuta, Dae-Gyu Park, Melanie J. Sherony, Kenneth J. Stein, Haizhou Yin, Franck Arnaud, Jin-Ping Han, Laegu Kang, Yong Meng Lee, Young Way Teh, Voon-Yew Thean, Da Zhang
  • Patent number: 7893502
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: February 22, 2011
    Assignees: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies AG
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Publication number: 20100289088
    Abstract: An epitaxial semiconductor layer may be formed in a first area reserved for p-type field effect transistors. An ion implantation mask layer is formed and patterned to provide an opening in the first area, while blocking at least a second area reserved for n-type field effect transistors. Fluorine is implanted into the opening to form an epitaxial fluorine-doped semiconductor layer and an underlying fluorine-doped semiconductor layer in the first area. A composite gate stack including a high-k gate dielectric layer and an adjustment oxide layer is formed in the first and second area. P-type and n-type field effect transistors (FET's) are formed in the first and second areas, respectively. The epitaxial fluorine-doped semiconductor layer and the underlying fluorine-doped semiconductor layer compensate for the reduction of the decrease in the threshold voltage in the p-FET by the adjustment oxide portion directly above.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicants: International Business Machines Corporation, Chartered Semiconductor Manufacturing, Ltd., Infineon Technologies North America Corp.
    Inventors: Weipeng Li, Dae-Gyu Park, Melanie J. Sherony, Jin-Ping Han, Yong Meng Lee
  • Publication number: 20090166757
    Abstract: A design structure embodied in a machine readable medium is provided for use in the design, manufacturing, and/or testing of Ics that include at least one SRAM cell. In particular, the present invention provides a design structure of an IC embodied in a machine readable medium, the IC including at least one SRAM cell with a gamma ratio of about 1 or greater. In the present invention, the gamma ratio is increased with degraded pFET device performance. Moreover, in the inventive IC, there is no stress liner boundary present in the SRAM region and ion variation for all devices is reduced as compared to that of a conventional SRAM structure. The present invention provides a design structure of an IC embodied in a machine readable medium, the IC comprising at least one static random access memory cell including at least one nFET and at least one pFET; and a continuous relaxed stressed liner located above and adjoining the at least one nFET and the at least one pFET.
    Type: Application
    Filed: December 27, 2007
    Publication date: July 2, 2009
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Christopher V. Baiocco, Xiandong Chen, Young G. Ko, Melanie J. Sherony
  • Patent number: 7471548
    Abstract: An integrated circuit (IC) is provided that includes at least one static random access memory (SRAM) cell wherein performance of the SRAM cell is enhanced, yet with good stability and writability. In particular, the present invention provides an IC including at least one SRAM cell wherein the gamma ratio is about 1 or greater. The gamma ratio is increased with degraded pFET device performance. Morever, in the inventive IC there is no stress liner boundary present in the SRAM region and ion variation for all devices is reduced as compared to that of a conventional SRAM structure. The present invention provides an integrated circuit (IC) that comprises at least one SRAM cell including at least one nFET and at least one pFET; and a continuous relaxed stressed liner located above and adjoining the nFET and the pFET.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 30, 2008
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd.
    Inventors: Christopher V. Baiocco, Xiangdong Chen, Young G. Ko, Melanie J. Sherony
  • Publication number: 20080142895
    Abstract: An IC is provided that includes at least one SRAM cell in which the performance of the SRAM cell is enhanced, yet maintaining good stability and writability. In particular, the present invention provides an IC including at least one SRAM cell wherein the gamma ratio is about 1 or greater. In the present invention, the gamma ratio is increased with degraded pFET device performance. Moreover, in the inventive IC there is no stress liner boundary present in the SRAM region and ion variation for all devices is reduced as compared to that of a conventional SRAM structure. The present invention, solves the above by providing an integrated circuit (IC) that comprises at least one static random access memory cell including at least one nFET and at least one pFET; and a continuous relaxed stressed liner located above and adjoining the at least one nFET and the at least one pFET.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Christopher V. Baiocco, Xiangdong Chen, Young G. Ko, Melanie J. Sherony
  • Patent number: 6750109
    Abstract: A semiconductor chip includes a semiconductor substrate having a rectifying contact diffusion and a non-rectifying contact diffusion. A halo diffusion is adjacent the rectifying contact diffusion and no halo diffusion is adjacent the non-rectifying contact diffusion. The rectifying contact diffusion can be a source/drain diffusion of an FET to improve resistance to punch-through. The non-rectifying contact diffusion may be an FET body contact, a lateral diode contact, or a resistor or capacitor contact. Avoiding a halo for non-rectifying contacts reduces series resistance and improves device characteristics. In another embodiment on a chip having devices with halos adjacent diffusions, no halo diffusion is adjacent a rectifying contact diffusion of a lateral diode, significantly improving ideality of the diode and increasing breakdown voltage.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: June 15, 2004
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, Jawahar P. Nayak, Werner A. Rausch, Melanie J. Sherony, Steven H. Voldman, Noah D. Zamdmer
  • Publication number: 20020149058
    Abstract: A semiconductor chip includes a semiconductor substrate having a rectifying contact diffusion and a non-rectifying contact diffusion. A halo diffusion is adjacent the rectifying contact diffusion and no halo diffusion is adjacent the non-rectifying contact diffusion. The rectifying contact diffusion can be a source/drain diffusion of an FET to improve resistance to punch-through. The non-rectifying contact diffusion may be an FET body contact, a lateral diode contact, or a resistor or capacitor contact. Avoiding a halo for non-rectifying contacts reduces series resistance and improves device characteristics. In another embodiment on a chip having devices with halos adjacent diffusions, no halo diffusion is adjacent a rectifying contact diffusion of a lateral diode, significantly improving ideality of the diode and increasing breakdown voltage.
    Type: Application
    Filed: July 1, 2002
    Publication date: October 17, 2002
    Applicant: International Business Machines Corporation
    Inventors: James A. Culp, Jawahar P. Nayak, Werner A. Rausch, Melanie J. Sherony, Steven H. Voldman, Noah D. Zamdmer