Patents by Inventor Melburne C. Lemieux

Melburne C. Lemieux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968787
    Abstract: A method of forming a transparent electrically conductive film including depositing a dispersion of metal nanowires onto a substrate surface, delivering a solution including a fusing agent in a solvent onto the substrate surface, and drying the substrate surface after depositing the metal nanowires and delivering the fusing agent solution to fuse at least some of the metal nanowires into the transparent electrically conductive film comprising a fused metal nanowire network.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: April 23, 2024
    Assignee: C3 Nano, Inc.
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Publication number: 20210307163
    Abstract: This disclosure provides electrically conductive materials, including electrically conductive textile materials, such as woven or knitted fabric textiles, individual fibers, and woven fibers and yarns. The conductive materials comprise a substrate material, such as a textile or other suitable material, and a metal embedded in the substrate material, in particular where the metal is embedded into and below the surface of the material. Also provided are methods of making the electrically conductive materials.
    Type: Application
    Filed: August 3, 2019
    Publication date: September 30, 2021
    Inventors: Melburne C. LEMIEUX, Steven Brett WALKER, Gaurav TULSYAN
  • Publication number: 20200377744
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Patent number: 10781324
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: September 22, 2020
    Assignee: C3Nano Inc.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20180297840
    Abstract: A method of forming a transparent electrically conductive film including depositing a dispersion of metal nanowires onto a substrate surface, delivering a solution including a fusing agent in a solvent onto the substrate surface, and drying the substrate surface after depositing the metal nanowires and delivering the fusing agent solution to fuse at least some of the metal nanowires into the transparent electrically conductive film comprising a fused metal nanowire network.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 18, 2018
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Publication number: 20180287608
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Application
    Filed: June 6, 2018
    Publication date: October 4, 2018
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Patent number: 10029916
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were fused together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency. Materials formed form the fused metal nanowire networks described herein can have a transparency to visible light of at least about 85% and a sheet resistance of no more than about 100 Ohms/square or a transparency to visible light of at least about 90% and a sheet resistance of no more than about 250 Ohms/square. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. When formed into a film, materials comprising the metal nanowire network demonstrate low sheet resistance while maintaining desirably high levels of optical transparency, making them suitable for transparent electrode formation.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: July 24, 2018
    Assignee: C3Nano Inc.
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux
  • Patent number: 10020807
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: July 10, 2018
    Assignee: C3NANO INC.
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Publication number: 20180155558
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Patent number: 9920207
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 20, 2018
    Assignee: C3NANO INC.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20150298248
    Abstract: A bonded structure formed by a low-temperature bonding method comprises a first substrate bonded to a second substrate by a conductive layer comprising a metal. The conductive layer includes a first interfacial portion adjacent to the first substrate, a second interfacial portion adjacent to the second substrate, and a central portion between the first and second interfacial portions. The first and second interfacial portions comprise an interfacial conductivity of from about 1% to about 20% of a bulk conductivity of the metal, and the central portion comprises from greater than 20% to about 80% of the bulk conductivity of the metal. The bonded structure comprises a bond strength of from about 10 lbf to about 200 lbf.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 22, 2015
    Inventors: Steven Brett Walker, Melburne C. LeMieux
  • Patent number: 9087995
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: July 21, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. LeMieux, Zhenan Bao
  • Publication number: 20140302296
    Abstract: Inks for the formation of transparent conductive films are described that comprise an aqueous or alcohol based solvent, carbon nanotubes as well as suitable dopants. Suitable dopants generally comprise halogenated ionic dopants. In some embodiment, the inks comprise sulfonated dispersants that can effectively provide additional doping to improve electrical conductivity as well as stabilize the inks with respect to settling and/or improve the fluid properties of the inks for certain processing approaches. The inks can be processed into films with desirable levels of electrical conductivity and optical transparency.
    Type: Application
    Filed: September 24, 2012
    Publication date: October 9, 2014
    Applicant: C3NANO INC.
    Inventors: Melburne C. LeMieux, Ajay Virkar, Yung-Yu Huang
  • Publication number: 20140238833
    Abstract: Reduction/oxidation reagents have been found to be effective to chemically cure a sparse metal nanowire film into a fused metal nanostructured network through evidently a ripening type process. The resulting fused network can provide desirable low sheet resistances while maintaining good optical transparency. The transparent conductive films can be effectively applied as a single conductive ink or through sequential forming of a metal nanowire film with the subsequent addition of a fusing agent. The fused metal nanowire films can be effectively patterned, and the patterned films can be useful in devices, such as touch sensors.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: C3NANO INC.
    Inventors: Ajay Virkar, Xiqiang Yang, Ying-Syi Li, Dennis McKean, Melburne C. LeMieux
  • Patent number: 8785763
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Publication number: 20140138612
    Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.
    Type: Application
    Filed: September 9, 2013
    Publication date: May 22, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ajay Virkar, Melburne C. LeMieux, Zhenan Bao
  • Publication number: 20140087164
    Abstract: Inks for the formation of transparent conductive films are described that comprise an aqueous or alcohol based solvent, carbon nanotubes as well as suitable dopants. Suitable dopants generally comprise halogenated ionic dopants. In some embodiment, the inks comprise sulfonated dispersants that can effectively provide additional doping to improve electrical conductivity as well as stabilize the inks with respect to settling and/or improve the fluid properties of the inks for certain processing approaches. The inks can be processed into films with desirable levels of electrical conductivity and optical transparency.
    Type: Application
    Filed: September 24, 2012
    Publication date: March 27, 2014
    Applicant: C3NANO INC.
    Inventors: Melburne C. LeMieux, Ajay Virkar, Yung-Yu Huang
  • Publication number: 20140001437
    Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
  • Publication number: 20130342221
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: October 30, 2012
    Publication date: December 26, 2013
    Applicant: C3NANO INC.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20130341074
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were fused together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency. Materials formed form the fused metal nanowire networks described herein can have a transparency to visible light of at least about 85% and a sheet resistance of no more than about 100 Ohms/square or a transparency to visible light of at least about 90% and a sheet resistance of no more than about 250 Ohms/square. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. When formed into a film, materials comprising the metal nanowire network demonstrate low sheet resistance while maintaining desirably high levels of optical transparency, making them suitable for transparent electrode formation.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Inventors: Ajay Virkar, Ying-Syi Li, Melburne C. LeMieux