Patents by Inventor Melissa Damschroder

Melissa Damschroder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200317757
    Abstract: This disclosure relates to combination therapies comprising anti-Pseudomonas Psl and PcrV binding molecules and related compositions, for use in prevention and treatment of Pseudomonas infection.
    Type: Application
    Filed: February 13, 2020
    Publication date: October 8, 2020
    Inventors: Antonio DIGIANDOMENICO, Paul WARRENER, Charles STOVER, Bret SELLMAN, Ralph MINTER, Sandrine GUILLARD, Steven RUST, Mladen TOMICH, Vignesh VENKATRAMAN, Reena VARKEY, Li PENG, Melissa DAMSCHRODER, Partha S. CHOWDHURY, Nazzareno DIMASI, Ryan FLEMING, Binyam BEZABEH, Changshou GAO, Godfrey RAINEY, Cuihua GAO
  • Publication number: 20200164069
    Abstract: This disclosure provides IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof. In certain aspects the anti-IL-21 antibodies and fragments thereof can be hybridoma-derived murine monoclonal antibodies, and humanized versions thereof. In certain aspects the binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof provided herein inhibit, suppress, or antagonize IL-21 activity. In addition, this disclosure provides compositions and methods for diagnosing and treating diseases or disorders, e.g., inflammatory, immune-mediated, or autoimmune diseases or disorders associated with IL-21-mediated signal transduction. In a particular embodiment, the disclosure provides methods for treating or preventing Graft-versus-host disease (GVHD) using IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof.
    Type: Application
    Filed: February 5, 2020
    Publication date: May 28, 2020
    Applicant: Boston Pharmaceuticals Inc.
    Inventors: Catherine Ettinger, Jodi Karnell, Melissa Damschroder, Partha Chowdhury, Xiaodong Xiao, Ping Tsui, Reena Varkey, Stacey Drabic, Laura Carter, Ronald Herbst, Qun Du, Brian Michael Naiman
  • Publication number: 20200109190
    Abstract: The present disclosure is directed to leukotoxin-binding antibodies and antigen-binding fragments thereof. The antibodies and fragments can be used, for example, to detect leukotoxin and/or in methods of treating and preventing Staphylococcus aureus infections.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Inventors: Christine TKACZYK, Bret Sellman, Qun Du, Melissa Damschroder, Davide Corti, Andrea Minola
  • Publication number: 20200109189
    Abstract: The present disclosure is directed to anti-Staphylococcus aureus antibody combinations including combinations of antibodies that bind to S. aureus alpha toxin (AT) protein, clumping factor A protein (C1fA), and/or at least one leukotoxin protein. Methods of treating and preventing infections comprising administering the antibody combinations are also provided herein.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 9, 2020
    Inventors: Christine TKACZYK, Bret SELLMAN, Qun DU, Melissa DAMSCHRODER, Taylor COHEN
  • Patent number: 10597439
    Abstract: This disclosure relates to combination therapies comprising anti-Pseudomonas Psl and PcrV binding molecules and related compositions, for use in prevention and treatment of Pseudomonas infection.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: March 24, 2020
    Assignee: MEDIMMUNE LIMITED
    Inventors: Antonio Digiandomenico, Paul Warrener, Charles Stover, Bret Sellman, Ralph Minter, Sandrine Guillard, Steven Rust, Mladen Tomich, Vignesh Venkatraman, Reena Varkey, Li Peng, Melissa Damschroder, Partha Chowdhury, Nazzareno Dimasi, Ryan Fleming, Binyam Bezabeh, Changshou Gao, Godfrey Rainey, Cuihua Gao
  • Patent number: 10588969
    Abstract: This disclosure provides IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof. In certain aspects the anti-IL-21 antibodies and fragments thereof can be hybridoma-derived murine monoclonal antibodies, and humanized versions thereof. In certain aspects the binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof provided herein inhibit, suppress, or antagonize IL-21 activity. In addition, this disclosure provides compositions and methods for diagnosing and treating diseases or disorders, e.g., inflammatory, immune-mediated, or autoimmune diseases or disorders associated with IL-21-mediated signal transduction. In a particular embodiment, the disclosure provides methods for treating or preventing Graft-versus-host disease (GVHD) using IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 17, 2020
    Assignee: Boston Pharmaceuticals, Inc.
    Inventors: Catherine Ettinger, Jodi Karnell, Melissa Damschroder, Partha Chowdhury, Xiaodong Xiao, Ping Tsui, Reena Varkey, Stacey Drabic, Laura Carter, Ronald Herbst, Qun Du, Brian Michael Naiman
  • Publication number: 20200079877
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Application
    Filed: November 8, 2019
    Publication date: March 12, 2020
    Inventors: Carl HAY, Kris SACHSENMEIER, Erin SULT, Qihui Huang, Peter PAVLIK, Melissa DAMSCHRODER, Li CHENG, Gundo DIEDRICH, Jonathan RIOS-DORIA, Scott HAMMOND, Ralph MINTER, Steve RUST, Sandrine GUILLARD, Robert HOLLINGSWORTH, Lutz JERMUTUS, Nicholas DURHAM, Ching Ching LEOW, Mary ANTONYSAMY, James GEOGHEGAN, Xiaojun LU, Kim ROSENTHAL
  • Patent number: 10556968
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 11, 2020
    Assignee: MEDIMMUNE LIMITED
    Inventors: Carl Hay, Kris Sachsenmeier, Erin Sult, Qihui Huang, Peter Pavlik, Melissa Damschroder, Li Cheng, Gundo Diedrich, Jonathan Rios-Doria, Scott Hammond, Ralph Minter, Steve Rust, Sandrine Guillard, Robert Hollingsworth, Lutz Jermutus, Nicholas Durham, Ching Ching Leow, Mary Antonysamy, James Geoghegan, Xiaojun Lu, Kim Rosenthal
  • Publication number: 20190292274
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Application
    Filed: April 4, 2019
    Publication date: September 26, 2019
    Inventors: Carl HAY, Kris SACHSENMEIER, Erin SULT, Qihui HUANG, Peter PAVLIK, Melissa DAMSCHRODER, Li CHENG, Gundo DIEDRICH, Jonathan RIOS-DORIA, Scott HAMMOND, Ralph MINTER, Steve RUST, Sandrine GUILLARD, Robert HOLLINGSWORTH, Lutz JERMUTUS, Nicholas DURHAM, Ching Ching LEOW, Mary ANTONYSAMY, James GEOGHEGAN, Xiaojun LU, Kim ROSENTHAL
  • Publication number: 20190169303
    Abstract: The disclosure provides humanized anti-OX40 antibodies. Also provided are methods of making such antibodies, and methods of use, e.g., treatment of cancer.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 6, 2019
    Inventors: Scott A. Hammond, Michael Oberst, Qun Du, Melissa Damschroder
  • Patent number: 10287362
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: May 14, 2019
    Assignee: MedImmune Limited
    Inventors: Carl Hay, Kris Sachsenmeier, Erin Sult, Qihui Huang, Peter Pavlik, Melissa Damschroder, Li Cheng, Gundo Diedrich, Jonathan Rios-Doria, Scott Hammond, Ralph Minter, Steve Rust, Sandrine Guillard, Robert Hollingsworth, Lutz Jermutus, Nicholas Durham, Ching Ching Leow, Mary Antonysamy, James Geoghegan, Xiaojun Lu, Kim Rosenthal
  • Patent number: 10160812
    Abstract: The present invention relates to anti-HER2 binding molecules (e.g., antibodies and antigen binding fragments thereof), derived HER2-binding molecules (e.g., bispecific anti-HER2 antibodies), and antibody-drug conjugates (ADC) that bind the extracellular domain of the HER2 receptor. Also provided are pharmaceutical formulation comprising the disclosed compositions and method for the treating diseases associated with HER2-mediated signal transduction.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: December 25, 2018
    Assignee: MedImmune, LLC
    Inventors: John Li, Nazzareno Dimasi, Steven Coats, Melissa Damschroder, Changshou Gao, Godfrey Rainey, Cuihua Gao, Dorin Toader, Lakshmaiah Gingipalli, Fengjiang Wang, Ryan Fleming, Binyam Bezabeh, Andy Qingan Yuan, Srinath Kasturirangan
  • Patent number: 10150815
    Abstract: The disclosure provides humanized anti-OX40 antibodies. Also provided are methods of making such antibodies, and methods of use, e.g., treatment of cancer.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: December 11, 2018
    Assignee: MEDIMMUNE, LLC
    Inventors: Scott A. Hammond, Michael Oberst, Qun Du, Melissa Damschroder
  • Publication number: 20180318416
    Abstract: This disclosure provides IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof. In certain aspects the anti-IL-21 antibodies and fragments thereof can be hybridoma-derived murine monoclonal antibodies, and humanized versions thereof. In certain aspects the binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof provided herein inhibit, suppress, or antagonize IL-21 activity. In addition, this disclosure provides compositions and methods for diagnosing and treating diseases or disorders, e.g., inflammatory, immune-mediated, or autoimmune diseases or disorders associated with IL-21-mediated signal transduction. In a particular embodiment, the disclosure provides methods for treating or preventing Graft-versus-host disease (GVHD) using IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof.
    Type: Application
    Filed: June 11, 2018
    Publication date: November 8, 2018
    Applicant: Boston Pharmaceuticals Inc.
    Inventors: Catherine Ettinger, Jodi Karnell, Melissa Damschroder, Partha Chowdhury, Xiaodong Xiao, Ping Tsui, Reena Varkey, Stacey Drabic, Laura Carter, Ronald Herbst, Qun Du, Brian Michael Naiman
  • Publication number: 20180273621
    Abstract: The present invention provides chimeric and humanized versions of anti-CD19 mouse monoclonal antibodies. The invention further relates to pharmaceutical compositions, immunotherapeutic compositions, and methods using therapeutic antibodies that bind to the human CD19 antigen and that may mediate ADCC, CDC, and/or apoptosis for the treatment of B cell diseases and disorders, such as, but not limited to, B cell malignancies, for the treatment and prevention of autoimmune disease, and for the treatment and prevention of graft-versus-host disease (GVHD), humoral rejection, and post-transplantation lymphoproliferative disorder in human transplant recipients.
    Type: Application
    Filed: January 5, 2018
    Publication date: September 27, 2018
    Inventors: Melissa Damschroder, Peter Kiener, Herren Wu, William Dall'Acqua, Ronald Herbst, Anthony Coyle
  • Patent number: 10022443
    Abstract: This disclosure provides IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof. In certain aspects the anti-IL-21 antibodies and fragments thereof can be hybridoma-derived murine monoclonal antibodies, and humanized versions thereof. In certain aspects the binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof provided herein inhibit, suppress, or antagonize IL-21 activity. In addition, this disclosure provides compositions and methods for diagnosing and treating diseases or disorders, e.g., inflammatory, immune-mediated, or autoimmune diseases or disorders associated with IL-21-mediated signal transduction. In a particular embodiment, the disclosure provides methods for treating or preventing Graft-versus-host disease (GVHD) using IL-21 binding molecules, e.g., anti-IL-21 antibodies and antigen-binding fragments thereof.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: July 17, 2018
    Assignee: Boston Pharmaceuticals Inc.
    Inventors: Catherine Ettinger, Jodi Karnell, Melissa Damschroder, Partha Chowdhury, Xiaodong Xiao, Ping Tsui, Reena Varkey, Stacey Drabic, Laura Carter, Ronald Herbst, Qun Du, Brian Michael Naiman
  • Publication number: 20180194858
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Application
    Filed: February 23, 2018
    Publication date: July 12, 2018
    Inventors: Carl HAY, Kris SACHSENMEIER, Erin SULT, Qihui Huang, Peter PAVLIK, Melissa DAMSCHRODER, Li CHENG, Gundo DIEDRICH, Jonathan RIOS-DORIA, Scott HAMMOND, Ralph MINTER, Steve RUST, Sandrine GUILLARD, Robert HOLLINGSWORTH, Lutz JERMUTUS, Nicholas DURHAM, Ching Ching LEOW, Mary ANTONYSAMY, James GEOGHEGAN, Xiaojun LU, Kim ROSENTHAL
  • Patent number: 9938356
    Abstract: The present disclosure provides anti-CD73 binding molecules, e.g., antibodies and antigen binding fragments thereof. Also provided are pharmaceutical formulations comprising the disclosed compositions, and methods for the diagnosis and treatment of diseases associated with CD73-expression, e.g., cancer. Such diseases can be treated, e.g., by direct therapy with the anti-CD73 binding molecules disclosed herein (e.g., naked antibodies or antibody-drug conjugates that bind CD73), by adjuvant therapy with other antigen-binding anticancer agents such as immune checkpoint inhibitors (e.g., anti-CTLA-4 and anti-PD-1 monoclonal antibodies), and/or by combination therapies where the anti-CD73 molecules are administered before, after, or concurrently with chemotherapy.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 10, 2018
    Assignee: MEDIMMUNE LIMITED
    Inventors: Carl Hay, Kris Sachsenmeier, Erin Sult, Qihui Huang, Peter Pavlik, Melissa Damschroder, Li Cheng, Gundo Diedrich, Jonathan Rios-Doria, Scott Hammond, Ralph Minter, Steve Rust, Sandrine Guillard, Robert Hollingsworth, Lutz Jermutus, Nicholas Durham, Ching Ching Leow, Mary Antonysamy, James Geoghegan, Xiaojun Lu, Kim Rosenthal
  • Publication number: 20180072808
    Abstract: The disclosure provides humanized anti-OX40 antibodies. Also provided are methods of making such antibodies, and methods of use, e.g., treatment of cancer.
    Type: Application
    Filed: June 28, 2017
    Publication date: March 15, 2018
    Inventors: SCOTT A. HAMMOND, MICHAEL OBERST, QUN DU, MELISSA DAMSCHRODER
  • Patent number: 9896505
    Abstract: The present invention provides chimeric and humanized versions of anti-CD19 mouse monoclonal antibodies. The invention further relates to pharmaceutical compositions, immunotherapeutic compositions, and methods using therapeutic antibodies that bind to the human CD19 antigen and that may mediate ADCC, CDC, and/or apoptosis for the treatment of B cell diseases and disorders, such as, but not limited to, B cell malignancies, for the treatment and prevention of autoimmune disease, and for the treatment and prevention of graft-versus-host disease (GVHD), humoral rejection, and post-transplantation lymphoproliferative disorder in human transplant recipients.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: February 20, 2018
    Assignee: MedImmune, LLC
    Inventors: Melissa Damschroder, Peter Kiener, Herren Wu, William Dall'Acqua, Ronald Herbst, Anthony Coyle