Patents by Inventor Melvin B. McLaurin

Melvin B. McLaurin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9117944
    Abstract: A plurality of III-nitride semiconductor structures, each including a light emitting layer disposed between an n-type region and a p-type region, are grown on a composite substrate. The composite substrate includes a plurality of islands of III-nitride material connected to a host by a bonding layer. The plurality of III-nitride semiconductor structures are grown on the III-nitride islands. The composite substrate may be formed such that each island of III-nitride material is at least partially relaxed. As a result, the light emitting layer of each semiconductor structure has an a-lattice constant greater than 3.19 angstroms.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: August 25, 2015
    Assignees: Koninklijke Philips N.V., Philips Lumileds Lighting Company LLC
    Inventors: Melvin B. McLaurin, Michael R. Krames
  • Patent number: 8492244
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Soitec
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Patent number: 8481408
    Abstract: A method for relaxing a layer of a strained material. The method includes depositing a first low-viscosity layer on a first face of a strained material layer; bonding a first substrate to the first low-viscosity layer to form a first composite structure; subjecting the composite structure to heat treatment sufficient to cause reflow of the first low-viscosity layer so as to at least partly relax the strained material layer; and applying a mechanical pressure to a second face of the strained material layer wherein the second face is opposite to the first face and with the mechanical pressure applied perpendicularly to the strained material layer during at least part of the heat treatment to relax the strained material.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: July 9, 2013
    Assignee: Soitec
    Inventors: Fabrice Letertre, Carlos Mazure, Michael R. Krames, Melvin B. McLaurin, Nathan F. Gardner
  • Patent number: 8334543
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 18, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Aurelien J. F. David, Michael R. Krames, Melvin B. McLaurin
  • Publication number: 20120241798
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Application
    Filed: April 30, 2012
    Publication date: September 27, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Aurelien J.F. David, Michael R. Krames, Melvin B. McLaurin
  • Publication number: 20120214291
    Abstract: A method for relaxing a layer of a strained material. The method includes depositing a first low-viscosity layer on a first face of a strained material layer; bonding a first substrate to the first low-viscosity layer to form a first composite structure; subjecting the composite structure to heat treatment sufficient to cause reflow of the first low-viscosity layer so as to at least partly relax the strained material layer; and applying a mechanical pressure to a second face of the strained material layer wherein the second face is opposite to the first face and with the mechanical pressure applied perpendicularly to the strained material layer during at least part of the heat treatment to relax the strained material.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Applicant: SOITEC
    Inventors: Fabrice Letertre, Carlos Mazure, Michael R. Krames, Melvin B. McLaurin, Nathan F. Gardner
  • Patent number: 8203153
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: June 19, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds LightingCompany, LLC
    Inventors: Aurelien J. F. David, Michael R. Krames, Melvin B. McLaurin
  • Publication number: 20120068192
    Abstract: A method of reducing threading dislocation densities in non-polar such as a-{11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
    Type: Application
    Filed: November 30, 2011
    Publication date: March 22, 2012
    Applicant: The Regents of the University of California
    Inventors: Kwang C. Kim, Mathew C. Schmidt, Feng Wu, Asako Hirai, Melvin B. McLaurin, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Patent number: 8106403
    Abstract: Embodiments of the invention include a III-nitride semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. At least one layer in the light emitting region is Bx(InyGa1-y)1-xN. In some embodiments, x is less than 14%. In some embodiments, the BN composition is selected such that the Bx(InyGa1-y)1-xN layer has the same band gap energy as a comparable InGaN layer, with a bulk lattice constant that is the same or smaller than the comparable InGaN layer.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: January 31, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventor: Melvin B. McLaurin
  • Patent number: 8105852
    Abstract: A method according to embodiments of the invention includes providing a substrate comprising a host and a seed layer bonded to the host. The seed layer comprises a plurality of regions. A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is grown on the substrate. A top surface of a semiconductor layer grown on the seed layer has a lateral extent greater than each of the plurality of seed layer regions.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: January 31, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Nathan F. Gardner, Michael R. Krames, Melvin B. McLaurin, Sungsoo Yi
  • Publication number: 20110193094
    Abstract: A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 11, 2011
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Benjamin A. Haskell, Melvin B. McLaurin, Steven P. DenBaars, James Stephen Speck, Shuji Nakamura
  • Publication number: 20110180911
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Publication number: 20110177631
    Abstract: A method according to embodiments of the invention includes providing a substrate comprising a host and a seed layer bonded to the host. The seed layer comprises a plurality of regions. A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is grown on the substrate. A top surface of a semiconductor layer grown on the seed layer has a lateral extent greater than each of the plurality of seed layer regions.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Nathan F. Gardner, Michael R. Krames, Melvin B. McLaurin, Sungsoo Yi
  • Publication number: 20110175112
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Aurelien J. F. DAVID, Michael R. KRAMES, Melvin B. McLAURIN
  • Patent number: 7981767
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: July 19, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Patent number: 7956360
    Abstract: A method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. High quality, uniform, thick m-plane GaN films are produced for use as substrates for polarization-free device growth.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: June 7, 2011
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Benjamin A. Haskell, Melvin B. McLaurin, Steven P. DenBaars, James Stephen Speck, Shuji Nakamura
  • Publication number: 20100224852
    Abstract: Embodiments of the invention include a III-nitride semiconductor structure comprising a light emitting region disposed between an n-type region and a p-type region. At least one layer in the light emitting region is Bx(InyGa1-y)1-xN. In some embodiments, x is less than 14%. In some embodiments, the BN composition is selected such that the Bx(InyGa1-y)1-xN layer has the same band gap energy as a comparable InGaN layer, with a bulk lattice constant that is the same or smaller than the comparable InGaN layer.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 9, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Melvin B. McLaurin
  • Publication number: 20100072489
    Abstract: A plurality of III-nitride semiconductor structures, each comprising a light emitting layer disposed between an n-type region and a p-type region, are grown on a composite substrate. The composite substrate includes a plurality of islands of III-nitride material connected to a host by a bonding layer. The plurality of III-nitride semiconductor structures are grown on the III-nitride islands. The composite substrate may be formed such that each island of III-nitride material is at least partially relaxed. As a result, the light emitting layer of each semiconductor structure has an a-lattice constant greater than 3.19 angstroms.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 25, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Melvin B. MCLAURIN, Michael R. KRAMES
  • Publication number: 20100032793
    Abstract: The present invention provides methods for forming at least partially relaxed strained material layers on a target substrate. The methods include forming islands of the strained material layer on an intermediate substrate, at least partially relaxing the strained material islands by a first heat treatment, and transferring the at least partially relaxed strained material islands to the target substrate. The at least partial relaxation is facilitated by the presence of low-viscosity or compliant layers adjacent to the strained material layer. The invention also provides semiconductor structures having an at least partially relaxed strained material layer, and semiconductor devices fabricated using an at least partially relaxed strained material layer.
    Type: Application
    Filed: December 22, 2008
    Publication date: February 11, 2010
    Inventors: Pascal Guenard, Bruce Faure, Fabrice Letertre, Michael R. Krames, Nathan F. Gardner, Melvin B. McLaurin
  • Publication number: 20080163814
    Abstract: A method of reducing threading dislocation densities in non-polar such as a- {11-20} plane and m-{1-100} plane or semi-polar such as {10-1n} plane III-Nitrides by employing lateral epitaxial overgrowth from sidewalls of etched template material through a patterned mask. The method includes depositing a patterned mask on a template material such as a non-polar or semi polar GaN template, etching the template material down to various depths through openings in the mask, and growing non-polar or semi-polar III-Nitride by coalescing laterally from the tops of the sidewalls before the vertically growing material from the trench bottoms reaches the tops of the sidewalls. The coalesced features grow through the openings of the mask, and grow laterally over the dielectric mask until a fully coalesced continuous film is achieved.
    Type: Application
    Filed: December 11, 2007
    Publication date: July 10, 2008
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Kwang Choong Kim, Mathew C. Schmidt, Feng Wu, Asako Hirai, Melvin B. McLaurin, Steven P. DenBaars, Shuji Nakamura, James S. Speck