Patents by Inventor Melvin R. Jackson

Melvin R. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6468040
    Abstract: A cast turbine airfoil to which a squealer tip is added. The turbine airfoil is cast slightly undersize. The squealer tip is comprised of an alloy that is different from the cast alloy of the airfoil, the oxidation resistance and strength of the squealer tip alloy being greater than the strength of the turbine airfoil alloy. The cast turbine alloy having the added squealer tip can utilize a material in the squealer tip that is more difficult to cast than the cast alloy material, yet is more suited for severe environmental conditions and temperature extremes.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: October 22, 2002
    Assignee: General Electric Company
    Inventors: Richard J. Grylls, Joseph D. Rigney, Warren D. Grossklaus, Jr., Melvin R. Jackson
  • Patent number: 6306524
    Abstract: A coating for use on a superalloy substrate comprising a diffusion barrier as an intermediate layer overlying the substrate and underlying a protective coating having a high aluminum content. The diffusion barrier layer is characterized by having low solubility for aluminum from either the substrate or the protective coating. Further, the diffusion barrier layer has low interdiffusivity for elements from the substrate and the coating, a minimal impact on the mechanical properties of the article which is coated, a minimal thermal expansion mismatch with both the substrate and the high aluminum content protective coating, and can be applied readily using existing coating application techniques. The diffusion barrier is preferably a single phase alloy or intermetallic compound.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: October 23, 2001
    Assignee: General Electric Company
    Inventors: Irene T. Spitsberg, Ramgopal Darolia, Melvin R. Jackson, Ji-Cheng Zhao, Jon C. Schaeffer
  • Publication number: 20010001897
    Abstract: A method of forming an internal channel within an article, such as a cooling channel in an air-cooled blade, vane, shroud, combustor or duct of a gas turbine engine. The method generally entails forming a substrate to have a groove recessed in its surface. A sacrificial material is then deposited in the groove to form a filler that can be preferentially removed from the groove. A permanent layer is then deposited on the surface of the substrate and over the filler, after which the filler is removed from the groove to yield the desired channel in the substrate beneath the permanent layer.
    Type: Application
    Filed: November 12, 1998
    Publication date: May 31, 2001
    Inventors: JI CHENG ZHAO, MELVIN R. JACKSON, PAUL L. DUPREE, JAMES R. DOBBS
  • Patent number: 5666643
    Abstract: A braze material is provided for repairing an article, and particularly components formed from cobalt and nickel-base superalloys, such as gas turbine engine components. The braze material is composed of high melt particles distributed within a braze alloy. The braze alloy can be any suitable bonding material of the type used to repair components that must operate at high temperatures. The particles are single crystal, directionally solidified or equiaxed particles formed from a superalloy or ceramic material, or mixtures thereof. Importantly, the particles have an aspect ratio (length to width) of at least 4:1. The braze material can be provided and used in the form of a slurry, a presintered preform, a plasticized tape, or in a powdered form.
    Type: Grant
    Filed: May 15, 1996
    Date of Patent: September 9, 1997
    Assignee: General Electric Company
    Inventors: Richard P. Chesnes, Stephen J. Ferrigno, David E. Budinger, Melvin R. Jackson
  • Patent number: 5626462
    Abstract: A double-wall airfoil for applications such as the blades and vanes of gas turbine engines. The double-wall comprises an outer airfoil skin and an inner support wall that are metallurgically bonded to one another. The double-wall contains integral channels for passage of cooling air adjacent to the airfoil skin. Airfoil skin may be a metal alloy skin or a microlaminate structure, including microlaminate composite structures. Microlaminate composites typically have a lower density than that of the material used for the airfoil support wall, and a simplified internal geometry which promote weight reductions in the airfoils and increases in engine operating efficiency.
    Type: Grant
    Filed: January 3, 1995
    Date of Patent: May 6, 1997
    Assignee: General Electric Company
    Inventors: Melvin R. Jackson, David W. Skelly, Raymond G. Rowe, Donald G. LaChapelle, Paul S. Wilson
  • Patent number: 5597967
    Abstract: Two-phase Al--Si alloy foils are made directly from Al--Si alloy powders by hot pressing. These Al--Si alloy foils are characterized by having a thickness of 0.017 in. or less, and by the fact that they are fine-grained and substantially free of oxygen, nitrogen and deformation-induced defects. The as-pressed Al--Si foils where the primary phase is the Al solid-solution phase are also generally ductile and adapted for subsequent forming operations, including cold rolling. The reduction in thickness imparted in a single pass to an Al-11.6Si alloy foil through cold-rolling was at least about 10%, with up to about 90% reduction in thickness accomplished by a plurality of such passes. These reductions in thickness were accomplished without stress relief annealing, but such annealing may be employed if desirable for microstructural modification.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: January 28, 1997
    Assignee: General Electric Company
    Inventors: Ann M. Ritter, Melvin R. Jackson, John R. Hughes
  • Patent number: 5577093
    Abstract: An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem connection wherein at least about 40,000 x-ray scan-seconds are accomplished prior to tube failure due to anode assembly imbalance comprising a metallic target and a metal stem bonded to provide a composite rotating x-ray tube target is disclosed. An insert of an alloy, for example, tantalum alloy, is placed between the target layer and the stem and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations is also disclosed.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: November 19, 1996
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson
  • Patent number: 5571304
    Abstract: Oxide dispersion strengthened (ODS) Ni-base alloy foils are made directly from powders of these alloys by hot pressing. These ODS Ni-base alloy foils are characterized by having a thickness of 0.017 in. or less, and by the fact that they are fine-grained and substantially free of nitrogen and deformation induced defects. The as-pressed ODS Ni-base alloy foils are adapted for subsequent forming operations, including cold rolling. The reduction in thickness imparted in a single pass to an Ni-base alloy foil through cold-rolling was about 8%. The total reduction in thickness was about 55% based upon a plurality of such passes. For reductions in thickness greater than 20%, annealing is employed for stress relief.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: November 5, 1996
    Assignee: General Electric Company
    Inventors: Ann M. Ritter, Melvin R. Jackson, Paul L. Dupree, Donald N. Wemple, Jr.
  • Patent number: 5547410
    Abstract: Methods of making an improved high performance x-ray system having a rotating anode therein are available. The anode includes an improved target/stem connection which reduces tube failure due to anode assembly imbalance. Methods of bonding a metallic target and a metal stem to form a composite rotating x-ray tube target are also available. In these procedures an insert of an alloy, for example, tantalum or its alloys , is placed between the target and the niobium-alloy stem and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: August 20, 1996
    Assignee: General Electric Company
    Inventors: Michael R. Eggleston, Mark G. Benz, Melvin R. Jackson, John R. Hughes, Thomas R. Raber
  • Patent number: 5548628
    Abstract: An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem assembly comprising a metallic target and a large bore, thin-walled tubular metal stem which, when connected to a rotor body assembly, provides a rotating x-ray tube anode assembly is disclosed. An insert of an alloy, for example, tantalum alloy, is placed between the target layer and the large bore, thin-walled tubular stem and then bonded thereto to produce a composite x-ray tube target/stem assembly. The target/stem assembly is then connected to a rotor body assembly by fasteners, preferably threaded, applied through a plate connected to the tubular stem and preferably through a thermal washer to produce a rotating anode assembly having high bond strength that provides acceptable balance during x-ray tube operations.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: August 20, 1996
    Assignee: General Electric Company
    Inventors: Michael R. Eggleston, Mark G. Benz, Melvin R. Jackson, Robert J. Zabala
  • Patent number: 5530733
    Abstract: An improved high performance x-ray system having a rotating anode therein which includes an improved target/stem connection and a coating, operatively positioned between the target and the stem, for enhancing the diffusion therebetween to reduce tube failure due to anode assembly imbalance comprising a metallic target and a metal stem bonded to provide a composite rotating x-ray tube target is disclosed. An insert of an alloy, for example, titanium alloy, is placed between the target layer, the stem and a coating, operatively positioned between the target and the stem, for enhancing the diffusion therebetween and then bonded thereto to produce a composite x-ray tube target/stem having a high remelt temperature and bond strength which retains its balance throughout the manufacturing process and during x-ray tube operations is also disclosed.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: June 25, 1996
    Assignee: General Electric Company
    Inventors: Michael R. Eggleston, Melvin R. Jackson, Mark G. Benz
  • Patent number: 5498187
    Abstract: A method of making a high performance x-ray system having a rotating anode includes making target/tubular stem assembly and then assembling it to a rotor body assembly. This particular method reduces tube failure due to anode assembly imbalance and provides an improved rotating x-ray tube anode assembly.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: March 12, 1996
    Assignee: General Electric Company
    Inventors: Michael R. Eggleston, Mark G. Benz, Melvin R. Jackson, Robert J. Zabala
  • Patent number: 5498186
    Abstract: Methods of making an improved high performance x-ray system having a rotating anode therein which includes an improved target/tubular stem combination which, when combined with a rotor body assembly, reduces tube failure due to anode assembly imbalance and methods of bonding a metallic target and a metal tubular stem and connecting the combination to a rotor body assembly to provide a rotating x-ray tube target are disclosed. An insert of an alloy, for example, tantalum or its alloys, is placed between the target and the niobium-alloy tubular stem and then bonded thereto to produce the x-ray tube target/tubular stem assembly having a high remelt temperature and bond strength which, when connected, such as by bolting to the rotor body assembly, the resulting anode assembly retains proper balance during x-ray tube operations.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: March 12, 1996
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Melvin R. Jackson, Robert J. Zabala, Marshall G. Jones, Herman A. Nied, Michael R. Eggleston
  • Patent number: 5480468
    Abstract: Ni-base alloy foils are made directly from Ni-base alloy powders by hot pressing. These Ni-base alloy foils are characterized by having a thickness of 0.017 in. or less, and by the fact that they are fine-grained and substantially free of oxygen, nitrogen and deformation-induced defects. The as-pressed Ni-base foils are generally ductile and adapted for subsequent forming operations, including cold rolling. The reduction in thickness imparted in a single pass to a Ni-base alloy foil through cold-rolling ranged from 4-10% depending on the alloy composition. The total reduction in thickness ranged from about 10-50% based upon a plurality of such passes. For reductions in thickness greater than about 10%, annealing is employed for stress relief.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: January 2, 1996
    Assignee: General Electric Company
    Inventors: Ann M. Ritter, Melvin R. Jackson, Paul L. Dupree, Donald N. Wemple, Jr., John R. Hughes
  • Patent number: 5474809
    Abstract: An evaporation method is described for the deposition of various materials that comprise a plurality of elements, such as metal alloys, ceramics and certain inorganic-metallic compounds. The method involves the evaporation of a material comprising a plurality of elements through a molten pool of another material. The material which is to be evaporated is placed in a suitable evaporation means under the material which is to be used to form the molten pool. By applying heat sufficient to melt both materials, the material to be evaporated is transported through the molten pool of the other material. The materials are selected so that the material to be evaporated is preferentially evaporated with respect to the other material. This method produces a vapor stream and condensates that have compositions which closely resemble the compositions of the material from which they were deposited. Further, the condensate may be collected using the method of this invention at high rates on the order of 0.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: December 12, 1995
    Assignee: General Electric Company
    Inventors: David W. Skelly, Melvin R. Jackson
  • Patent number: 5472794
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based alloy are provided. The matrix is preferably an alloy having a niobium and titanium base according to the expressions:Nb.sub.balance -Ti.sub.27-40.5 -Al.sub.4.5-10.5 -Hf.sub.1.5-5.5 -Cr.sub.4.5-7.9 -V.sub.0-6,orNb.sub.balance -Ti.sub.27-40.5 -Al.sub.4.5-10.5 -Hf.sub.1.5-5.5 -Cr.sub.4.5-7.9 -V.sub.0-6 -Zr.sub.0-1 C.sub.0-0.5.The reinforcement may be in the form of strands of the higher strength, higher temperature niobium based alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: December 5, 1995
    Assignee: General Electric Company
    Inventors: Melvin R. Jackson, Mark G. Benz, John R. Hughes
  • Patent number: 5427735
    Abstract: Dense superalloy foils are prepared by hot isostatically pressing a mixture of low melting alloy powders and high melting alloy powders at a temperature at least equal to or greater than three-quarters of the melting point of the low melting point alloy powder and below the melting point of the high melting point alloy powder, at a pressure of at least 10 thousand pounds per square inch for about one to five hours.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: June 27, 1995
    Assignee: General Electric Company
    Inventors: Ann M. Ritter, Melvin R. Jackson
  • Patent number: 5426001
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based cladding alloy are provided. The cladding is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance --Ti.sub.40-48 --Al.sub.12-22 --Hf.sub.0.5-6.The reinforcement may be in the form of plates, sheets or rods of the higher strength, higher temperature niobium based reinforcing alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: June 20, 1995
    Assignee: General Electric Company
    Inventors: Melvin R. Jackson, Mark G. Benz, John R. Hughes
  • Patent number: 5405708
    Abstract: Composite structures having a higher density, stronger reinforcing niobium based alloy embedded within a lower density, lower strength niobium based cladding alloy are provided. The cladding is preferably an alloy having a niobium and titanium base according to the expression:Nb.sub.balance -Ti.sub.35-45 -Hf.sub.10-15.The reinforcement may be in the form of plates, sheets or rods of the higher strength, higher temperature niobium based reinforcing alloy. The same crystal form is present in both the matrix and the reinforcement and is specifically body centered cubic crystal form.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: April 11, 1995
    Assignee: General Electric Company
    Inventors: Melvin R. Jackson, Mark G. Benz, John R. Hughes
  • Patent number: 5366565
    Abstract: The alloy is preferably an alloy having a niobium and titanium base according to the expression:Nb-Ti.sub.27-40.5 -Al.sub.4.5-10.5 -Hf.sub.1.5-5.5 Cr.sub.4.5-7.9 V.sub.0-6,wherein the ratio of concentrations of Ti to Nb (Ti/Nb) is greater than or equal (.gtoreq.) to 0.5, andwherein the maximum concentration of the Hf+V+Al+Cr additives is less than or equal (.ltoreq.) to the expression:16.5+(5.times.Ti/Nb),and the minimum concentration of these additives is 10.5.The crystal form of the alloy is specifically body centered cubic crystal form.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: November 22, 1994
    Assignee: General Electric Company
    Inventor: Melvin R. Jackson