Patents by Inventor Memiee L. Hwang

Memiee L. Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170103296
    Abstract: A wireless input device comprises a plurality of RFID tag units and keys. Each RFID tag unit is coupled with two conductive wires. Only when the two conductive wires are in a closed-loop status, the RFID tag unit can generate a responsive RF signal corresponding to a scanning signal generated by a host device. Each key is formed with a switching mechanism connectable to the conductive wires of at least one of the RFID tag units. When any one of the keys is pressed, the conductive wires connectable to the pressed key will be switched to the closed-loop status from an open-loop status, and when that pressed key is released, the conductive wires connectable to the released key will be switched back to said open-loop status. Therefore, the wireless input device can be operated without the need of internal electric power.
    Type: Application
    Filed: October 7, 2015
    Publication date: April 13, 2017
    Inventors: Richard Hwang, Memiee L. Hwang
  • Patent number: 9600756
    Abstract: A wireless input device comprises a plurality of RFID tag units and keys. Each RFID tag unit is coupled with two conductive wires. Only when the two conductive wires are in a closed-loop status, the RFID tag unit can generate a responsive RF signal corresponding to a scanning signal generated by a host device. Each key is formed with a switching mechanism connectable to the conductive wires of at least one of the RFID tag units. When any one of the keys is pressed, the conductive wires connectable to the pressed key will be switched to the closed-loop status from an open-loop status, and when that pressed key is released, the conductive wires connectable to the released key will be switched back to said open-loop status. Therefore, the wireless input device can be operated without the need of internal electric power.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: March 21, 2017
    Inventors: Richard Hwang, Memiee L. Hwang
  • Patent number: 6750643
    Abstract: A group wiring patching device which has built-in light emitting device and filtering device coupled with wire pair receptacle thereof. When a testing voltage is applied to the circuit of the light emitting device, the light emitting device will emit light for assisting wire pair identification. The filtering device can minimize or even eliminate loop back shorting resulted by the circuit of the connected light emitting when communication signals or low voltage signals being applied thereto. Therefore, the group wiring patching device of the present invention will be able to perform ordinary signal transmitting functions without the need to remove the light emitting device after the wire pair identification process is done.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: June 15, 2004
    Inventors: Richard Hwang, Wayne Hwang, Memiee L. Hwang
  • Publication number: 20040021452
    Abstract: A group wiring patching device which has built-in light emitting means and filtering means coupled with wire pair receptacle thereof. When a testing voltage is applied to the circuit of the light emitting means, the light emitting means will emit light for assisting wire pair identification. The filtering means can minimize or even eliminate loop back shorting resulted by the circuit of the connected light emitting means when communication signals or low voltage signals being applied thereto. Therefore, the group wiring patching device of the present invention will be able to perform ordinary signal transmitting functions without the need to remove the light emitting means after the wire pair identification process is done.
    Type: Application
    Filed: August 5, 2002
    Publication date: February 5, 2004
    Inventors: Richard Hwang, Wayne Hwang, Memiee L. Hwang