Patents by Inventor Menashe MICHAELI

Menashe MICHAELI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872074
    Abstract: System for non-invasive measuring of an intracranial reserve space (ICRS) parameter of a mammalian subject, comprising a multi-frequency ultrasound probe configured, beginning at a start time, to emit and receive ultrasound waves into and the subject's head and to produce a signal of brain tissue pulsation; an instrument configured to non-invasively partially occlude an internal jugular vein (IJV) starting at the start time and including a second ultrasound probe producing a second signal; and a computer system configured to receive the signal, the second signal and the start time, the computer system also configured, using one or more processors, to derive from the signal an intracranial brain tissue pulsation waveform and from the second signal images of the IJV, and to determine a length of time from the start time to a subsequent time at which the waveform is sufficiently compressed so as to exhibit a predefined decline in variability.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: January 16, 2024
    Inventors: David Michaeli, Menashe Michaeli
  • Patent number: 11672439
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 13, 2023
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20220240804
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: David MICHAELI, Menashe MICHAELI
  • Patent number: 11304618
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: April 19, 2022
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20220061800
    Abstract: System for non-invasive measuring of an intracranial reserve space (ICRS) parameter of a mammalian subject, comprising a multi-frequency ultrasound probe configured, beginning at a start time, to emit and receive ultrasound waves into and the subject's head and to produce a signal of brain tissue pulsation; an instrument configured to non-invasively partially occlude an internal jugular vein (IJV) starting at the start time and including a second ultrasound probe producing a second signal; and a computer system configured to receive the signal, the second signal and the start time, the computer system also configured, using one or more processors, to derive from the signal an intracranial brain tissue pulsation waveform and from the second signal images of the IJV, and to determine a length of time from the start time to a subsequent time at which the waveform is sufficiently compressed so as to exhibit a predefined decline in variability.
    Type: Application
    Filed: November 9, 2021
    Publication date: March 3, 2022
    Inventors: David MICHAELI, Menashe MICHAELI
  • Patent number: 11166696
    Abstract: System for non-invasive measuring of an intracranial reserve space (ICRS) parameter of a mammalian subject, comprising a multi-frequency ultrasound probe configured, beginning at a start time, to emit and receive ultrasound waves into and from the subject's head and to produce a signal of brain tissue pulsation; an instrument configured to non-invasively partially occlude an internal jugular vein (IJV) starting at the start time and including a second ultrasound probe producing a second signal; and a computer system configured to receive the signal, the second signal and the start time, the computer system also configured, using one or more processors, to derive from the signal an intracranial brain tissue pulsation waveform and from the second signal images of the IJV, and to determine a length of time from the start time to a subsequent time at which the waveform is sufficiently compressed so as to exhibit a predefined decline in variability.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: November 9, 2021
    Assignee: CHOROSENSE MEDICAL LIMITED
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20210338093
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20210308046
    Abstract: A nebulizer is used to prevent infection by coronavirus by nebulizing a combination of hydrogenated water and ethyl alcohol, one or both of which have a counterclockwise spin polarization, into a vapor-aerosol mixture for inhalation by a patient. A storage container of helium adjacent to or in communication with an inside of the nebulizer increases partial pressure of the vapor-aerosol mixture during usage. The nebulizer may also nebulize into the vapor-aerosol mixture, one of the following third ingredient (a) hydrogen peroxide, (b) a low dosage of hydroxychloroquine or chloroquine (c) a very low dosage of a mixture of sodium chlorite with food-grade citric acid solution, (d) antibiotics. The third ingredient may vary to thwart development of resistance. A nebulized vapor-aerosol mixture produced by nebulizing a combination of ingredients is presented. A method of delivering a combination of ingredients directly to the lungs of a subject, at times bolstered by helium.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 7, 2021
    Inventors: David MICHAELI, Menashe Michaeli
  • Patent number: 11058313
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: July 13, 2021
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20210153760
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Application
    Filed: July 14, 2020
    Publication date: May 27, 2021
    Inventors: David Michaeli, Menashe Michaeli
  • Patent number: 10709345
    Abstract: Non-invasive measurement of intracranial pressure (ICP), for example mean ICP. A probe adjacent the head emits energy, such as ultrasound, and receives reflected signals. A processing unit derives ICP waveform from the signals. A pressure mechanism applies external pressure intermittently to outer surface of the head and incrementally increases the external pressure. The processing unit is configured to detect a decrease in amplitude of the ICP waveform (occurring in some embodiments only after an intermediate period of ICRS compensation), the processing unit configured to determine the ICP of the person from a sum of applied external pressures from a time of the initial value A1 until a final value at which the amplitude remains stable with additional increase in applied external pressure. In some cases, the final value is earlier than that but the processing unit extrapolates the sum to when the amplitude remains stable with additional increases in pressure.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: July 14, 2020
    Inventors: David Michaeli, Menashe Michaeli
  • Publication number: 20190069876
    Abstract: System for non-invasive measuring of an intracranial reserve space (ICRS) parameter of a mammalian subject, comprising a multi-frequency ultrasound probe configured, beginning at a start time, to emit and receive ultrasound waves into and from the subject's head and to produce a signal of brain tissue pulsation; an instrument configured to non-invasively partially occlude an internal jugular vein (IJV) starting at the start time and including a second ultrasound probe producing a second signal; and a computer system configured to receive the signal, the second signal and the start time, the computer system also configured, using one or more processors, to derive from the signal an intracranial brain tissue pulsation waveform and from the second signal images of the IJV, and to determine a length of time from the start time to a subsequent time at which the waveform is sufficiently compressed so as to exhibit a predefined decline in variability.
    Type: Application
    Filed: April 10, 2017
    Publication date: March 7, 2019
    Inventors: David MICHAELI, Menashe MICHAELI