Patents by Inventor Menashe Soffer

Menashe Soffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220373999
    Abstract: A method and system for identifying parts manufactured by a workstation by measuring signals generated by machines in the workstation, extracting features from the signals, clustering the features into clusters, associating clusters with manufactured parts and recognizing the parts through the clusters.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 24, 2022
    Inventors: Yuri Osokin, Beny Kirson, Aviv Rovshitz, Eden Hadad, Menashe Soffer, Ariel Rosenfeld, Ofer Affias, David Koren, Itzhak Pomerantz, Mordechai Teicher
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 10715234
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 14, 2020
    Assignee: INTEL CORPORATION
    Inventors: Menashe Soffer, Assaf Kasher
  • Patent number: 10686482
    Abstract: A metal chassis for a mobile device is configured to transmit a signal of a wavelength. A first side of the chassis faces the inside of the mobile device and includes a first aperture that has a dimension that comprises a first subwavelength width of a slot in the chassis. A second side of the chassis faces free space and includes a second aperture that has a dimension that comprises a second subwavelength width of the slot in the chassis. A channel connects the first aperture and the second aperture. The slot has a length dimension and the channel may be centered along the length dimension. The channel is configured to support a transverse electromagnetic mode for propagation of the signal from the first aperture through the channel to the second aperture. As a part of a mobile device the chassis acts as a secondary radiator for the mobile device.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: June 16, 2020
    Assignee: Intel Corporation
    Inventors: Yaniv Michaeli, Menashe Soffer, Omer Asaf, Ana M. Yepes, Manish A. Hiranandani, Anand S. Konanur
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20200083942
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 12, 2020
    Applicant: INTEL CORPORATION
    Inventors: Menashe Soffer, Assaf Kasher
  • Patent number: 10522898
    Abstract: Generally, this disclosure provides systems, devices and methods for integration of millimeter wave antennas in platforms with reduced form factors while maintaining or improving antenna gain. An antenna assembly may include a first planar substrate; a ground plane disposed on the first planar substrate; a second planar substrate disposed on the ground plane; and an antenna radiation element disposed on the second planar substrate. The antenna radiation element may be configured to transmit a signal in the millimeter wave frequency region. The assembly may also include a via to provide a conductive path for the signal from a microstrip feed line, beneath the first planar substrate, to the antenna radiation element. The assembly may further include a dielectric layer disposed on the antenna radiation element to provide increased antenna gain under conditions of reduced air gap between the antenna radiation element and a structural element of an enclosing platform.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: December 31, 2019
    Assignee: INTEL CORPORATION
    Inventors: Min Keen Tang, Ana M. Yepes, Yaniv Michaeli, Menashe Soffer
  • Patent number: 10491281
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: November 26, 2019
    Assignee: INTEL CORPORATION
    Inventors: Menashe Soffer, Assaf Kasher
  • Publication number: 20190109623
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Application
    Filed: December 10, 2018
    Publication date: April 11, 2019
    Inventors: Menashe Soffer, Assaf Kasher
  • Publication number: 20190058240
    Abstract: Generally, this disclosure provides systems, devices and methods for integration of millimeter wave antennas in platforms with reduced form factors while maintaining or improving antenna gain. An antenna assembly may include a first planar substrate; a ground plane disposed on the first planar substrate; a second planar substrate disposed on the ground plane; and an antenna radiation element disposed on the second planar substrate. The antenna radiation element may be configured to transmit a signal in the millimeter wave frequency region. The assembly may also include a via to provide a conductive path for the signal from a microstrip feed line, beneath the first planar substrate, to the antenna radiation element. The assembly may further include a dielectric layer disposed on the antenna radiation element to provide increased antenna gain under conditions of reduced air gap between the antenna radiation element and a structural element of an enclosing platform.
    Type: Application
    Filed: August 30, 2016
    Publication date: February 21, 2019
    Inventors: MIN KEEN TANG, ANA M. YEPES, YANIV MICHAELI, MENASHE SOFFER
  • Patent number: 10181886
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 7, 2018
    Date of Patent: January 15, 2019
    Assignee: INTEL CORPORATION
    Inventors: Menashe Soffer, Assaf Kasher
  • Publication number: 20180212657
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Application
    Filed: January 7, 2018
    Publication date: July 26, 2018
    Inventors: Menashe Soffer, Assaf Kasher
  • Patent number: 9887753
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 6, 2018
    Assignee: INTEL CORPORATION
    Inventors: Menashe Soffer, Assaf Kasher
  • Publication number: 20170250720
    Abstract: A metal chassis for a mobile device is configured to transmit a signal of a wavelength. A first side of the chassis faces the inside of the mobile device and includes a first aperture that has a dimension that comprises a first subwavelength width of a slot in the chassis. A second side of the chassis faces free space and includes a second aperture that has a dimension that comprises a second subwavelength width of the slot in the chassis. A channel connects the first aperture and the second aperture. The slot has a length dimension and the channel may be centered along the length dimension. The channel is configured to support a transverse electromagnetic mode for propagation of the signal from the first aperture through the channel to the second aperture. As a part of a mobile device the chassis acts as a secondary radiator for the mobile device.
    Type: Application
    Filed: December 21, 2016
    Publication date: August 31, 2017
    Inventors: Yaniv Michaeli, Menashe Soffer, Omer Asaf, Ana M. Yepes, Manish A. Hiranandani, Anand S. Konanur
  • Patent number: 8942218
    Abstract: Embodiments of retransmission of data using sub-carrier frequency permutation are described herein.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventor: Menashe Soffer
  • Patent number: 8873656
    Abstract: Some demonstrative embodiments include devices, systems and/or methods of processing single-carrier wireless communication signal. For example, a device may include a receiver to receive an analog single-carrier wireless communication signal representing a first plurality of time-domain samples at a first sampling rate; to convert the analog single-carrier wireless communication signal into a digital signal including a second plurality of time-domain samples at a second sampling rate, which is greater than the first sampling rate; to convert the second plurality of time-domain samples into a first plurality of frequency-domain samples; and to map the first plurality of frequency-domain samples into a second plurality of frequency-domain samples at the first sampling rate.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: October 28, 2014
    Assignee: Intel Corporation
    Inventors: Artyom Lomayev, Alexander Maltsev, Assaf Kasher, Menashe Soffer
  • Patent number: 8798681
    Abstract: In a wireless communication network, specific portions of the communication may combine directional transmission with omnidirectional reception. In particular, sector-level directional transmission may be established through sector sweeps, followed by antenna training for more directionality. In some embodiments, collisions during the exchange may be reduced by having different network devices use different sub-channels or different time slots. In some embodiments, each network may restrict its network communications to a single sub-channel that is different than the sub-channels used by adjacent networks.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 5, 2014
    Assignee: Intel Corporation
    Inventors: Menashe Soffer, Huaning Niu, Qinghua Li