Patents by Inventor Meng-Wei Chen

Meng-Wei Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240329361
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.
    Type: Application
    Filed: June 7, 2024
    Publication date: October 3, 2024
    Inventors: Sin-Hong LIN, Yung-Ping YANG, Wen-Yen HUANG, Yu-Cheng LIN, Kun-Shih LIN, Chao-Chang HU, Yung-Hsien YEH, Mao-Kuo HSU, Chih-Wei WENG, Ching-Chieh HUANG, Chih-Shiang WU, Chun-Chia LIAO, Chia-Yu CHANG, Hung-Ping CHEN, Wei-Zhong LUO, Wen-Chang LIN, Shou-Jen LIU, Shao-Chung CHANG, Chen-Hsin HUANG, Meng-Ting LIN, Yen-Cheng CHEN, I-Mei HUANG, Yun-Fei WANG, Wei-Jhe SHEN
  • Patent number: 12068395
    Abstract: A method includes forming a semiconductor fin protruding higher than a top surface of an isolation region. The semiconductor fin overlaps a semiconductor strip, and the semiconductor strip contacts the isolation region. The method further includes forming a gate stack on a sidewall and a top surface of a first portion of the semiconductor fin, and etching the semiconductor fin and the semiconductor strip to form a trench. The trench has an upper portion in the semiconductor fin and a lower portion in the semiconductor strip. A semiconductor region is grown in the lower portion of the trench. Process gases used for growing the semiconductor region are free from both of n-type dopant-containing gases and p-type dopant-containing gases. A source/drain region is grown in the upper portion of the trench, wherein the source/drain region includes a p-type or an n-type dopant.
    Type: Grant
    Filed: June 18, 2021
    Date of Patent: August 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Ku Chen, Ji-Yin Tsai, Jeng-Wei Yu, Yi-Fang Pai, Pei-Ren Jeng, Yee-Chia Yeo, Chii-Horng Li
  • Patent number: 12063360
    Abstract: A prediction processing system includes a processing circuit and a reference data buffer. The processing circuit performs a first inter prediction operation upon a first prediction block in a frame to generate a first inter prediction result, and further performs a second inter prediction operation upon a second prediction block during a first period. The reference data buffer buffers a reference data derived from the first inter prediction result. The processing circuit further fetches the reference data from the reference data buffer, and performs a non-inter prediction operation according to at least the reference data during a second period, wherein the second period overlaps the first period.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: August 13, 2024
    Assignee: MEDIATEK INC.
    Inventors: Kai-Chun Lin, Chi-Hung Chen, Meng-Jye Hu, Hsiao-En Chen, Chih-Wen Yang, Chien-Wei Lin
  • Patent number: 11940737
    Abstract: A method includes receiving a device design layout and a scribe line design layout surrounding the device design layout. The device design layout and the scribe line design layout are rotated in different directions. An optical proximity correction (OPC) process is performed on the rotated device design layout and the rotated scribe line design layout. A reticle includes the device design layout and the scribe line design layout is formed after performing the OPC process.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: March 26, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Publication number: 20210263425
    Abstract: A method includes receiving a device design layout and a scribe line design layout surrounding the device design layout. The device design layout and the scribe line design layout are rotated in different directions. An optical proximity correction (OPC) process is performed on the rotated device design layout and the rotated scribe line design layout. A reticle includes the device design layout and the scribe line design layout is formed after performing the OPC process.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi CHUNG, Yung-Cheng CHEN, Fei-Gwo TSAI, Chi-Hung LIAO, Shih-Chi FU, Wei-Ti HSU, Jui-Ping CHUANG, Tzong-Sheng CHANG, Kuei-Shun CHEN, Meng-Wei CHEN
  • Patent number: 11003091
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: May 11, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Patent number: 10867933
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The first overlay grating has a first strip portion and a second strip portion, and the first strip portion and the second strip portion are elongated in a first elongated axis and are spaced apart from each other. The method includes forming a layer over the first overlay grating. The layer has a first trench elongated in a second elongated axis, the second elongated axis is substantially perpendicular to the first elongated axis, and the first trench extends across the first strip portion and the second strip portion. The method includes forming a second overlay grating over the layer. The second overlay grating has a third strip portion and a fourth strip portion.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Long-Yi Chen, Jia-Hong Chu, Chi-Wen Lai, Chia-Ching Liang, Kai-Hsiung Chen, Yu-Ching Wang, Po-Chung Cheng, Hsin-Chin Lin, Meng-Wei Chen, Kuei-Shun Chen
  • Publication number: 20200365520
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The first overlay grating has a first strip portion and a second strip portion, and the first strip portion and the second strip portion are elongated in a first elongated axis and are spaced apart from each other. The method includes forming a layer over the first overlay grating. The layer has a first trench elongated in a second elongated axis, the second elongated axis is substantially perpendicular to the first elongated axis, and the first trench extends across the first strip portion and the second strip portion. The method includes forming a second overlay grating over the layer. The second overlay grating has a third strip portion and a fourth strip portion.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Long-Yi CHEN, Jia-Hong CHU, Chi-Wen LAI, Chia-Ching LIANG, Kai-Hsiung CHEN, Yu-Ching WANG, Po-Chung CHENG, Hsin-Chin LIN, Meng-Wei CHEN, Kuei-Shun CHEN
  • Patent number: 10734325
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The method includes forming a layer over the first overlay grating. The method includes forming a second overlay grating over the layer. The second overlay grating has a third strip portion and a fourth strip portion, the third strip portion and the fourth strip portion are elongated in the first elongated axis and are spaced apart from each other, there is a second distance between a third sidewall of the third strip portion and a fourth sidewall of the fourth strip portion, the third sidewall faces away from the fourth strip portion, the fourth sidewall faces the third strip portion, the first distance is substantially equal to the second distance, and the first trench extends across the third strip portion and the fourth strip portion.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 4, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Long-Yi Chen, Jia-Hong Chu, Chi-Wen Lai, Chia-Ching Liang, Kai-Hsiung Chen, Yu-Ching Wang, Po-Chung Cheng, Hsin-Chin Lin, Meng-Wei Chen, Kuei-Shun Chen
  • Publication number: 20200150546
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi CHUNG, Yung-Cheng CHEN, Fei-Gwo TSAI, Chi-Hung LIAO, Shih-Chi FU, Wei-Ti HSU, Jui-Ping CHUANG, Tzong-Sheng CHANG, Kuei-Shun CHEN, Meng-Wei CHEN
  • Publication number: 20200058595
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The method includes forming a layer over the first overlay grating. The method includes forming a second overlay grating over the layer. The second overlay grating has a third strip portion and a fourth strip portion, the third strip portion and the fourth strip portion are elongated in the first elongated axis and are spaced apart from each other, there is a second distance between a third sidewall of the third strip portion and a fourth sidewall of the fourth strip portion, the third sidewall faces away from the fourth strip portion, the fourth sidewall faces the third strip portion, the first distance is substantially equal to the second distance, and the first trench extends across the third strip portion and the fourth strip portion.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Long-Yi CHEN, Jia-Hong CHU, Chi-Wen LAI, Chia-Ching LIANG, Kai-Hsiung CHEN, Yu-Ching WANG, Po-Chung CHENG, Hsin-Chin LIN, Meng-Wei CHEN, Kuei-Shun CHEN
  • Patent number: 10534272
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: January 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Patent number: 10461037
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The first overlay grating has a first strip portion and a second strip portion. The method includes forming a first layer over the first overlay grating. The first layer has a first trench elongated in a second elongated axis, the second elongated axis is substantially perpendicular to the first elongated axis, and the first trench extends across the first strip portion and the second strip portion. The method includes forming a second overlay grating over the first layer. The second overlay grating has a third strip portion and a fourth strip portion. The third strip portion and the fourth strip portion are elongated in the first elongated axis and are spaced apart from each other.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 29, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Long-Yi Chen, Jia-Hong Chu, Chi-Wen Lai, Chia-Ching Liang, Kai-Hsiung Chen, Yu-Ching Wang, Po-Chung Cheng, Hsin-Chin Lin, Meng-Wei Chen, Kuei-Shun Chen
  • Publication number: 20190131190
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first overlay grating over a substrate. The first overlay grating has a first strip portion and a second strip portion. The method includes forming a first layer over the first overlay grating. The first layer has a first trench elongated in a second elongated axis, the second elongated axis is substantially perpendicular to the first elongated axis, and the first trench extends across the first strip portion and the second strip portion. The method includes forming a second overlay grating over the first layer. The second overlay grating has a third strip portion and a fourth strip portion. The third strip portion and the fourth strip portion are elongated in the first elongated axis and are spaced apart from each other.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Long-Yi CHEN, Jia-Hong CHU, Chi-Wen LAI, Chia-Ching LIANG, Kai-Hsiung CHEN, Yu-Ching WANG, Po-Chung CHENG, Hsin-Chin LIN, Meng-Wei CHEN, Kuei-Shun CHEN
  • Publication number: 20190004436
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi CHUNG, Yung-Cheng CHEN, Fei-Gwo TSAI, Chi-Hung LIAO, Shih-Chi FU, Wei-Ti HSU, Jui-Ping CHUANG, Tzong-Sheng CHANG, Kuei-Shun CHEN, Meng-Wei CHEN
  • Patent number: 10146141
    Abstract: The present disclosure provides a method. The method includes forming a resist layer on a patterned substrate; collecting first overlay data from the patterned substrate; determining an overlay compensation based on mapping of second overlay data from an integrated circuit (IC) pattern to the first overlay data from the patterned substrate; performing a compensation process to a lithography system according to the overlay compensation; and thereafter performing a lithography exposing process to the resist layer by the lithography system, thereby imaging the IC pattern to the resist layer.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 4, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Cheng Hung, Wei-Liang Lin, Yung-Sung Yen, Chun-Kuang Chen, Ru-Gun Liu, Tsai-Sheng Gau, Tzung-Chi Fu, Ming-Sen Tung, Fu-Jye Liang, Li-Jui Chen, Meng-Wei Chen, Kuei-Shun Chen
  • Patent number: 10073354
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: September 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsueh-Yi Chung, Yung-Cheng Chen, Fei-Gwo Tsai, Chi-Hung Liao, Shih-Chi Fu, Wei-Ti Hsu, Jui-Ping Chuang, Tzong-Sheng Chang, Kuei-Shun Chen, Meng-Wei Chen
  • Patent number: 9773671
    Abstract: Provided is a material composition and method for inhibiting the printing of SRAFs onto a substrate including coating a substrate with a resist layer. After coating the substrate, the resist layer is patterned to form a main feature pattern and at least one sub-resolution assist feature (SRAF) pattern within the resist layer. The main feature pattern may include resist sidewalls and a portion of a layer underlying the patterned resist layer. In various examples, a material composition is deposited over the patterned resist layer and into each of the main feature pattern and the at least one SRAF pattern. Thereafter, a material composition development process is performed to dissolve a portion of the material composition within the main feature pattern and to expose the portion of the layer underlying the patterned resist layer.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: September 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Tze Chen, Chen-Hau Wu, Meng-Wei Chen, Kuei-Shun Chen, Yu-Chin Huang, Li-Hsiang Lai, Shih-Ming Chang, Ken-Hsien Hsieh
  • Publication number: 20160124323
    Abstract: A method for exposing a wafer substrate includes forming a reticle having a device pattern. A relative orientation between the device pattern and a mask field of an exposure tool is determined based on mask field utilization. The reticle is loaded on the exposure tool. The wafer substrate is rotated based on an orientation of the device pattern. Radiation is projected through the reticle onto the rotated wafer substrate by the exposure tool, thereby imaging the device pattern onto the rotated wafer substrate.
    Type: Application
    Filed: May 7, 2015
    Publication date: May 5, 2016
    Inventors: Hsueh-Yi CHUNG, Yung-Cheng CHEN, Fei-Gwo TSAI, Chi-Hung LIAO, Shih-Chi FU, Wei-Ti HSU, Jui-Ping CHUANG, Tzong-Sheng CHANG, Kuei-Shun CHEN, Meng-Wei CHEN
  • Publication number: 20160062250
    Abstract: The present disclosure provides a method. The method includes forming a resist layer on a patterned substrate; collecting first overlay data from the patterned substrate; determining an overlay compensation based on mapping of second overlay data from an integrated circuit (IC) pattern to the first overlay data from the patterned substrate; performing a compensation process to a lithography system according to the overlay compensation; and thereafter performing a lithography exposing process to the resist layer by the lithography system, thereby imaging the IC pattern to the resist layer.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 3, 2016
    Inventors: Chi-Cheng Hung, Wei-Liang Lin, Yung-Sung Yen, Chun-Kuang Chen, Ru-Gun Liu, Tsai-Sheng Gau, Tzung-Chi Fu, Ming-Sen Tung, Fu-Jye Liang, Li-Jui Chen, Meng-Wei Chen, Kuei-Shun Chen