Patents by Inventor Meng-ying Chen
Meng-ying Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12089402Abstract: A method of generating an IC layout diagram includes abutting first and second cells to define a first active region including first and second anti-fuse bits, abutting third and fourth cells to define a second active region including third and fourth anti-fuse bits, and defining a third active region including fifth and sixth anti-fuse bits adjacent to the first through fourth anti-fuse bits. The first cell includes first and second via regions overlapping first and second gate regions shared by respective structures and transistors of the first, third, and fifth anti-fuse bits, the fourth cell includes third and fourth via regions overlapping third and fourth gate regions shared by respective transistors and structures of the second, fourth, and sixth anti-fuse bits, the third cell includes fifth and sixth via regions overlapping the first gate region, and the second cell includes seventh and eighth via regions overlapping the fourth gate region.Type: GrantFiled: July 3, 2023Date of Patent: September 10, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Meng-Sheng Chang, Chien-Ying Chen, Chia-En Huang, Yih Wang
-
Patent number: 12080641Abstract: An integrated circuit includes a transistor formed in a semiconductor structure, a front-side horizontal conducting line in a first metal layer above the semiconductor structure, and a front-side vertical conducting line in a second metal layer above the first metal layer. The front-side horizontal conducting line is directly connected to a first terminal of the transistor, and the front-side vertical conducting line is directly connected to the front-side horizontal conducting line. In the integrated circuit, a front-side fuse element is conductively connected to the front-side vertical conducting line, and a backside conducting line is directly connected to a second terminal of the transistor. A word connection line extending in the first direction is directly connected to a gate terminal of the transistor.Type: GrantFiled: October 18, 2023Date of Patent: September 3, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chien-Ying Chen, Yen-Jen Chen, Yao-Jen Yang, Meng-Sheng Chang, Chia-En Huang
-
Patent number: 12068287Abstract: A device comprises a first chip comprising a first connection pad embedded in a first dielectric layer and a first bonding pad embedded in the first dielectric layer, wherein the first bonding pad comprises a first portion and a second portion, the second portion being in contact with the first connection pad and a second chip comprising a second bonding pad embedded in a second dielectric layer of the second chip, wherein the first chip and the second chip are face-to-face bonded together through the first bonding pad the second bonding pad.Type: GrantFiled: February 17, 2023Date of Patent: August 20, 2024Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Szu-Ying Chen, Meng-Hsun Wan, Dun-Nian Yaung
-
Patent number: 7125912Abstract: A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.Type: GrantFiled: August 7, 2002Date of Patent: October 24, 2006Assignee: Simax Technologies, Inc.Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
-
Publication number: 20060083914Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.Type: ApplicationFiled: April 26, 2005Publication date: April 20, 2006Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Chan, Meng-ying Chen, Chinh Do
-
Patent number: 7026362Abstract: A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.Type: GrantFiled: October 9, 2001Date of Patent: April 11, 2006Assignee: Simax Technologies, Inc.Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
-
Patent number: 6884822Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.Type: GrantFiled: April 5, 2002Date of Patent: April 26, 2005Assignee: Simax Technologies, Inc.Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
-
Publication number: 20030078153Abstract: A method of preparing a solution for forming a doped gel monolith includes providing a first substance including a metal alkoxide. The method further includes providing a second substance including a catalyst. The method further includes providing a chemical including a dopant. The method further includes forming a solution including the dopant, said forming including mixing the first substance and the second substance together. The method further includes cooling the solution to a mixture temperature which is at or below zero degrees Celsius, wherein the solution has a significantly longer gelation time at the mixture temperature than at room temperature.Type: ApplicationFiled: August 7, 2002Publication date: April 24, 2003Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
-
Publication number: 20030068266Abstract: A method of manufacturing a xerogel monolith having a pore diameter distribution includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming a wet gel monolith. The method further includes forming the xerogel monolith by drying the wet gel monolith.Type: ApplicationFiled: April 5, 2002Publication date: April 10, 2003Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do
-
Publication number: 20030069122Abstract: A method of forming a gel monolith includes preparing a first solution comprising metal alkoxide and preparing a second solution comprising a catalyst. A third solution is prepared by mixing the first solution and the second solution together. At least one of the first, second, and third solutions is cooled to achieve a mixture temperature for the third solution which is substantially below room temperature, wherein the third solution has a significantly longer gelation time at the mixture temperature as compared to a room temperature gelation time for the third solution. The method further includes allowing the third solution to gel, thereby forming the gel monolith.Type: ApplicationFiled: October 9, 2001Publication date: April 10, 2003Inventors: Shiho Wang, Yasar Halefoglu, Chih-hsing Cheng, Dengfeng Xu, David Kwong Nung Chan, Meng-ying Chen, Chinh Do