Patents by Inventor Mengfei Wu

Mengfei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141301
    Abstract: A method for preparing a tumor-derived microparticle by a microwave includes the following steps: step 1, Lewis lung carcinoma (LLC) of a lung adenocarcinoma cell line is taken and then the LCC is cultured in a culture dish for more than 24 hours (h) to obtain cultured cells; step 2, microwave heating treatment is performed on the cultured cells obtained in step 1 to obtain treated cells; step 3, the treated cells obtained in step 2 are placed into a constant temperature incubator for cultivation for 24 h; and step 4, a supernatant of cells is collected from the culture dish cultured in step 3, and multiple centrifugation treatments is performed on the supernatant by using a density gradient centrifugation method to obtain a precipitate which is the tumor-derived microparticle TMPMW.
    Type: Application
    Filed: June 9, 2023
    Publication date: May 2, 2024
    Inventors: Yang Jin, WenJuan Chen, MengFei Guo, JingJing Deng, YaLi Wu
  • Patent number: 11021179
    Abstract: A method for detecting whether a point rail is attached to a stock rail is disclosed. The method is performed by using a first pressure sensor and a second pressure sensor. Each of the first pressure sensor and the second pressure sensor is configured to detect whether the point rail is attached to the corresponding one of the pair of stock rails, convert a pressure signal between the point rail and the stock rails into a voltage signal, and transmit the voltage signal to a signal processor. The signal processor is configured to process and transmit the processed voltage signal to a monitoring center having a host computer. The host computer is configured to control an operation of a switch in response to the detected pressure value collected by the first pressure sensor and the second pressure sensor by using a PID control algorithm.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: June 1, 2021
    Assignee: EAST CHINA JIAOTONG UNIVERSITY
    Inventors: Jun Hu, Mengfei Wu, Kangyu Liang, Yuqi Wei, Hao Liu, Junjie Yang
  • Patent number: 10794771
    Abstract: The present invention generally relates to composition and methods for downconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the organic material and the nanocrystal. In certain embodiments, the nanocrystal has a first excited energy state with an energy less than a triplet energy state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the organic material to produce two triplet excitons. The triplet excitons may then transfer to the nanocrystal via the ligand, where they can undergo recombination, resulting in the formation low energy photons.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 6, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Daniel N. Congreve, Nicholas John Thompson, Mark W. B. Wilson, Mengfei Wu, Marc A. Baldo, Moungi G. Bawendi, Vladimir Bulovic
  • Patent number: 9944847
    Abstract: The present invention generally relates to composition and methods for upconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the nanocrystal and the organic material. In certain embodiments, the nanocrystal has a first excited energy state with an energy greater than a triplet state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the nanocrystal to produce triplet excitons. The triplet excitons may then transfer from the nanocrystal to the organic material and undergo triplet-triplet annihilation, creating a singlet state of approximately twice the energy of the triplet exciton. In certain embodiments, the singlet state fluoresces, resulting in the formation of a high energy photon.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: April 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Marc A. Baldo, Daniel N. Congreve, Nicholas John Thompson, Mark W. B. Wilson, Mengfei Wu, Moungi G. Bawendi, Vladimir Bulovic
  • Publication number: 20160238455
    Abstract: The present invention generally relates to composition and methods for downconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the organic material and the nanocrystal. In certain embodiments, the nanocrystal has a first excited energy state with an energy less than a triplet energy state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the organic material to produce two triplet excitons. The triplet excitons may then transfer to the nanocrystal via the ligand, where they can undergo recombination, resulting in the formation low energy photons.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 18, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Daniel N. Congreve, Nicholas John Thompson, Mark W.B. Wilson, Mengfei Wu, Marc A. Baldo, Moungi G. Bawendi, Vladimir Bulovic
  • Publication number: 20160237343
    Abstract: The present invention generally relates to composition and methods for upconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the nanocrystal and the organic material. In certain embodiments, the nanocrystal has a first excited energy state with an energy greater than a triplet state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the nanocrystal to produce triplet excitons. The triplet excitons may then transfer from the nanocrystal to the organic material and undergo triplet-triplet annihilation, creating a singlet state of approximately twice the energy of the triplet exciton. In certain embodiments, the singlet state fluoresces, resulting in the formation of a high energy photon.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 18, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Marc A. Baldo, Daniel N. Congreve, Nicholas John Thompson, Mark W.B. Wilson, Mengfei Wu, Moungi G. Bawendi, Vladimir Bulovic