Patents by Inventor Mengjiang XING

Mengjiang XING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11987532
    Abstract: An ion-modified microwave dielectric ceramic is provided and a chemical formula thereof is Zn0.15Nb0.3[Ti1-x(W1/3Zr1/2)x]0.55O2. In the chemical formula, x is in a range of 0.01 to 0.03. The ion-modified microwave dielectric ceramic includes the following components in parts by weight: 12.58-12.67 parts of ZnO, 41.11-41.39 parts of TiO2, 43.93-45.14 parts of Nb2O5, 0.44-1.31 parts of WO3, and 0.35-1.05 parts of ZrO2. A preparation method of the ion-modified microwave dielectric ceramic can be applied to different industrial requirements, such as electronic components, communication equipment, and microwave components; and the obtained ion-modified microwave dielectric ceramic expands a practical value of a Zn0.15Nb0.3Ti0.55O2 series microwave dielectric ceramic in electronic ceramic manufacturing.
    Type: Grant
    Filed: October 25, 2023
    Date of Patent: May 21, 2024
    Assignee: Huzhou Ceramic-Chip Electronic Technology Co., Ltd.
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Liang Chai, YiFang Zhang
  • Publication number: 20240140874
    Abstract: An ion-modified microwave dielectric ceramic is provided and a chemical formula thereof is Zn0.15Nb0.3[Ti1-x(W1/3Zr1/2)x]0.55O2. In the chemical formula, x is in a range of 0.01 to 0.03. The ion-modified microwave dielectric ceramic includes the following components in parts by weight: 12.58-12.67 parts of ZnO, 41.11-41.39 parts of TiO2, 43.93-45.14 parts of Nb2O5, 0.44-1.31 parts of WO3, and 0.35-1.05 parts of ZrO2. A preparation method of the ion-modified microwave dielectric ceramic can be applied to different industrial requirements, such as electronic components, communication equipment, and microwave components; and the obtained ion-modified microwave dielectric ceramic expands a practical value of a Zn0.15Nb0.3Ti0.55O2 series microwave dielectric ceramic in electronic ceramic manufacturing.
    Type: Application
    Filed: October 25, 2023
    Publication date: May 2, 2024
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Liang Chai, YiFang Zhang
  • Patent number: 11897815
    Abstract: A Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By providing a glass additive with high matching with a Mg—Ta ceramic, a modifier A+12CO3—B2+O—C3+2O3—SiO2 (A=Li, K; B=MnO, CuO, BaO; C=B, Al) is intruded in to a main material MgO—Ta2O5, which can significantly reduce the sintering temperature and provide a negative temperature coefficient of dielectric constant of ?100±30 ppm/° C., and reduce the deterioration factors of loss caused by an additive for sintering, and prepare a dielectric material applied to RF MLCC with low loss, low cost and good process stability.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: February 13, 2024
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan
  • Patent number: 11873248
    Abstract: The invention belongs to the field of electronic ceramics and its manufacturing, in particular to the modified NiO—Ta2O5-based microwave dielectric ceramic material sintered at low temperature and its preparation method. It is guided by ion doping modification, not only considering the substitution of ions with similar radius, such as Zn2+ replacing Ni2+ ions, V5+ replacing Ta5+ ions; Meanwhile, the selected doped oxide still has the property of low melting point. Therefore, the microwave dielectric properties of NiO—Ta2O5-based ceramic material can be improved and the appropriate sintering temperature can be reduced. In the invention, by adjusting the molar content of each raw material, the NiO—Ta2O5-based ceramic material with low-temperature sintering, stable temperature and excellent microwave dielectric property is directly synthesized at one time, which can be widely applied to the technical field of LTCC.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: January 16, 2024
    Assignee: Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou
    Inventors: MengJiang Xing, XiaoZhen Li, HongYu Yang, MingShan Qu
  • Patent number: 11858855
    Abstract: A low-temperature sintered microwave dielectric ceramic material and a preparation method thereof are provided. The ceramic material includes a base material and a low-melting-point glass material; a general chemical formula of the base material is (Zn0.9Cu0.1)0.15Nb0.3(Ti0.9Zr0.1)0.55O2; a percent by weight of the low-melting-point glass material is in a range of 1 wt. % to 2 wt. %; chemical compositions of the low-melting-point glass material include A2CO3-M2O3—SiO2, A of which includes at least two of a lithium ion, a sodium ion, and a potassium ion, M of which includes at least one of a boron ion and a bismuth ion; and a sintering temperature of the ceramic material is in a range of 850° C. to 900° C. The microwave dielectric ceramic material has the advantages of low dielectric loss, simple and controllable process, etc., has good process stability, and can meet requirements for radio communication industry.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: January 2, 2024
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: MengJiang Xing, XiaoZhen Li, YuanYuan Yang, YanLing Luo, HongYu Yang, QingYang Fan, YunSheng Zhao, Hao Li
  • Patent number: 11854745
    Abstract: A modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By using characteristics that radii of the Cu2+ ion and (Al1/2Nb1/2)4+ ion are close to those of Ni and Ti elements, respectively, Cu2+, Al3+ and Nb5+ ions are introduced into a Ni0.5Ti0.5TaO4 matrix for partial substitution, a negative temperature coefficient of dielectric constant of ?220±30 ppm/° C. is provided while a sintering temperature is significantly reduced, and deterioration factors of loss caused by sintering aids is reduced, so that the dielectric material applied to radio frequency MLCC with low loss, low cost and good process stability is prepared.
    Type: Grant
    Filed: April 27, 2023
    Date of Patent: December 26, 2023
    Assignee: Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Hao Li, YunSheng Zhao
  • Publication number: 20230348332
    Abstract: A Mg—Ta based dielectric ceramic for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By providing a glass additive with high matching with a Mg—Ta ceramic, a modifier A+12CO3—B2+O—C3+2O3—SiO2 (A=Li, K; B=MnO, CuO, BaO; C=B, Al) is intruded in to a main material MgO—Ta2O5, which can significantly reduce the sintering temperature and provide a negative temperature coefficient of dielectric constant of ?100±30 ppm/° C., and reduce the deterioration factors of loss caused by an additive for sintering, and prepare a dielectric material applied to RF MLCC with low loss, low cost and good process stability.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan
  • Publication number: 20230352239
    Abstract: A modified Ni—Ti—Ta dielectric material for multi-layer ceramic capacitor (MLCC) and a low-temperature preparation method thereof are provided. By using characteristics that radii of the Cu2+ ion and (Al½Nb½)4+ ion are close to those of Ni and Ti elements, respectively, Cu2+, Al3+ and Nb5+ ions are introduced into a Ni0.5Ti0.5TaO4 matrix for partial substitution, a negative temperature coefficient of dielectric constant of -220±30 ppm/°C is provided while a sintering temperature is significantly reduced, and deterioration factors of loss caused by sintering aids is reduced, so that the dielectric material applied to radio frequency MLCC with low loss, low cost and good process stability is prepared.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Inventors: YuanYuan Yang, XiaoZhen Li, MengJiang Xing, YanLing Luo, HongYu Yang, QingYang Fan, Hao Li, YunSheng Zhao
  • Patent number: 11746056
    Abstract: The invention belongs to the field of electronic ceramics and its manufacturing, in particular to the modified NiTa2O6-based microwave dielectric ceramic material co-sintered at low temperature and its preparation method. Based on the low melting point characteristics of CuO and B2O3, and the radius of Cu2+ ions is similar to that of Ni2+ and Ta5+ ions, the chemical general formula of the invention is designed as xCuO-(1-x)NiO-[7.42y+(xy/14.33)]B2O3—Ta2O5, and the molar content of each component is adjusted from raw materials. The main crystalline phase of NiTa2O6 is synthesized at a lower pre-sintering temperature, and NiTa2O6-based ceramic material with low-temperature sintering characteristics and excellent microwave dielectric properties are directly synthesized at one time, which broadened the application range in LTCC field.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: September 5, 2023
    Assignee: Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou
    Inventors: MengJiang Xing, XiaoZhen Li, HongYu Yang, MingShan Qu
  • Patent number: 11724966
    Abstract: A temperature-stable modified NiO—Ta2O5-based microwave dielectric ceramic material and a preparation method thereof are provided. Using ion doping modification to form solid solution structure is an important measure to adjust microwave dielectric properties, especially the temperature stability. Based on formation rules of the solid solution, ion replacement methods are designed including Ni2+ ions are replaced by Cu2+ ions, and (Ni1/3Ta2/3)4+ composite ions are replaced by [(Al1/2Nb1/2)ySn1-y]4+ composite ions, which considers that cations with similar ionic radii to Ni2+ and Ta5+ ions can be introduced into the NiTa2O6 ceramic for doping under the same coordination environment (coordination number=6), and therefore a ceramic material with the NiTa2O6 solid solution structure can be obtained. The microwave dielectric ceramic material with excellent temperature stability and low loss is finally prepared by adjusting molar contents of each of doped ions, and its microwave dielectric properties are excellent.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: August 15, 2023
    Assignee: UNIVERSITY OF ELECTRONIC SCI. AND TECH. OF CHINA
    Inventors: MengJiang Xing, MingShan Qu, HongYu Yang
  • Publication number: 20230145935
    Abstract: The invention belongs to the field of electronic ceramics and its manufacturing, in particular to the modified NiO-Ta2O5-based microwave dielectric ceramic material sintered at low temperature and its preparation method. It is guided by ion doping modification, not only considering the substitution of ions with similar radius, such as Zn2+ replacing Ni2+ ions, V5+ replacing Ta5+ ions; Meanwhile, the selected doped oxide still has the property of low melting point. Therefore, the microwave dielectric properties of NiO-Ta2O5-based ceramic material can be improved and the appropriate sintering temperature can be reduced. In the invention, by adjusting the molar content of each raw material, the NiO-Ta2O5-based ceramic material with low-temperature sintering, stable temperature and excellent microwave dielectric property is directly synthesized at one time, which can be widely applied to the technical field of LTCC.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 11, 2023
    Inventors: MengJiang Xing, XiaoZhen Li, HongYu Yang, MingShan Qu
  • Publication number: 20230135062
    Abstract: A temperature-stable modified NiO—Ta2O5-based microwave dielectric ceramic material and a preparation method thereof are provided. Using ion doping modification to form solid solution structure is an important measure to adjust microwave dielectric properties, especially the temperature stability. Based on formation rules of the solid solution, ion replacement methods are designed including Ni2+ ions are replaced by Cu2+ ions, and (Ni1/3Ta2/3)4+ composite ions are replaced by [(Al1/2Nb1/2)ySn1-y]4+ composite ions, which considers that cations with similar ionic radii to Ni2+ and Ta5+ ions can be introduced into the NiTa2O6 ceramic for doping under the same coordination environment (coordination number=6), and therefore a ceramic material with the NiTa2O6 solid solution structure can be obtained. The microwave dielectric ceramic material with excellent temperature stability and low loss is finally prepared by adjusting molar contents of each of doped ions, and its microwave dielectric properties are excellent.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 4, 2023
    Inventors: MengJiang Xing, MingShan Qu, HongYu Yang
  • Publication number: 20230132916
    Abstract: The invention belongs to the field of electronic ceramics and its manufacturing, in particular to the modified NiTa2O6-based microwave dielectric ceramic material co-sintered at low temperature and its preparation method. Based on the low melting point characteristics of CuO and B2O3, and the radius of Cu2+ ions is similar to that of Ni2+ and Ta5+ ions, the chemical general formula of the invention is designed as xCuO-(1-x)NiO-[7.42y+(xy/14.33)]B2O3—Ta2O5, and the molar content of each component is adjusted from raw materials. The main crystalline phase of NiTa2O6 is synthesized at a lower pre-sintering temperature, and NiTa2O6-based ceramic material with low-temperature sintering characteristics and excellent microwave dielectric properties are directly synthesized at one time, which broadened the application range in LTCC field.
    Type: Application
    Filed: November 3, 2022
    Publication date: May 4, 2023
    Inventors: MengJiang Xing, XiaoZhen Li, HongYu Yang, MingShan Qu
  • Patent number: 10189973
    Abstract: The present invention provides an LCP derivative/soft magnetic ferrite composite material, which is prepared by complexing and assembling an LCP derivative as a host and soft magnetic ferrite particles as a guest. The present invention also provides a method for preparing the composite material. The composite material of the present invention has high stability and is not easily dissociated, and has high customized magnestic permeability, dielectricity, thermal stability, environmental resistance, and chemical resistance; and the preparation process of the composite material meets the energy-saving and emission reduction requirements. Therefore, the composite material has a wide industrial application prospect. The composite material of the present invention can be widely applied to the wireless communication field, the aviation, spaceflight and military fields, the microwave and radio frequency component application field, the automotive electronic component field, and the like.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: January 29, 2019
    Assignee: YUNNAN INFINE NEO-MATERIAL CO., LTD
    Inventors: Mengjiang Xing, Mingang Zheng
  • Publication number: 20170210878
    Abstract: The present invention provides an LCP derivative/soft magnetic ferrite composite material, which is prepared by complexing and assembling an LCP derivative as a host and soft magnetic ferrite particles as a guest. The present invention also provides a method for preparing the composite material. The composite material of the present invention has high stability and is not easily dissociated, and has high customized magnestic permeability, dielectricity, thermal stability, environmental resistance, and chemical resistance; and the preparation process of the composite material meets the energy-saving and emission reduction requirements. Therefore, the composite material has a wide industrial application prospect. The composite material of the present invention can be widely applied to the wireless communication field, the aviation, spaceflight and military fields, the microwave and radio frequency component application field, the automotive electronic component field, and the like.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 27, 2017
    Inventors: Mengjiang XING, Mingang ZHENG