Patents by Inventor Mengkun Liu

Mengkun Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024723
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 17, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Publication number: 20170131148
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Application
    Filed: May 16, 2016
    Publication date: May 11, 2017
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Patent number: 9366576
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: June 14, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Publication number: 20150285687
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Application
    Filed: February 27, 2015
    Publication date: October 8, 2015
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Patent number: 9000376
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 7, 2015
    Assignees: Massachusettes Institute of Technology, Trustees of Boston University
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan
  • Publication number: 20140061469
    Abstract: An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
    Type: Application
    Filed: July 2, 2013
    Publication date: March 6, 2014
    Inventors: Harold Y. Hwang, Mengkun Liu, Richard D. Averitt, Keith A. Nelson, Aaron Sternbach, Kebin Fan