Patents by Inventor Mengli Wang

Mengli Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821891
    Abstract: A device and/or methodology are described that include a mechanism for separating erythrocytes from other constituents of blood and for purifying leukocytes from blood. The separation and purification aspects may be provided in separate components or within the same component. The separation aspect assists in separating erythrocytes (red blood cells) from other cells in blood, such as by aggregation of the red blood cells. A suitable aggregation device or device component uses chambers with at least one small dimension (e.g., a microfluidic chip) to control the interaction of the blood with a solution containing a high molecular weight polymer (e.g., dextran) to achieve separation.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: November 21, 2023
    Assignee: General Electric Company
    Inventors: Jessica Godin Karp, Xiaohui Chen, Kashan Ali Shaikh, Mengli Wang, Ralf Lenigk, Christine Lynne Surrette
  • Patent number: 11580430
    Abstract: Determining a quality score for a part manufactured by an additive manufacturing machine based on build parameters and sensor data without the need for extensive physical testing of the part. Sensor data is received from the additive manufacturing machine during manufacture of the part using a first set of build parameters. The first set of build parameters is received. A first algorithm is applied to the first set of build parameters and the received sensor data to generate a quality score. The first algorithm is trained by receiving a reference derived from physical measurements performed on at least one reference part built using a reference set of build parameters. The quality score is output via the communication interface of the device.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: February 14, 2023
    Assignee: General Electric Company
    Inventors: Lembit Salasoo, Vipul K. Gupta, Xiaohu Ping, Subhrajit Roychowdhury, Justin Gambone, Jr., Naresh Iyer, Xiaolei Shi, Mengli Wang
  • Publication number: 20210088503
    Abstract: A device and/or methodology are described that include a mechanism for separating erythrocytes from other constituents of blood and for purifying leukocytes from blood. The separation and purification aspects may be provided in separate components or within the same component. The separation aspect assists in separating erythrocytes (red blood cells) from other cells in blood, such as by aggregation of the red blood cells. A suitable aggregation device or device component uses chambers with at least one small dimension (e.g., a microfluidic chip) to control the interaction of the blood with a solution containing a high molecular weight polymer (e.g., dextran) to achieve separation.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Jessica Godin Karp, Xiaohui Chen, Kashan Ali Shaikh, Mengli Wang, Ralf Lenigk, Christine Lynne Surrette
  • Patent number: 10859563
    Abstract: A device and/or methodology are described that include a mechanism for separating erythrocytes from other constituents of blood and for purifying leukocytes from blood. The separation and purification aspects may be provided in separate components or within the same component. The separation aspect assists in separating erythrocytes (red blood cells) from other cells in blood, such as by aggregation of the red blood cells. A suitable aggregation device or device component uses chambers with at least one small dimension (e.g., a microfluidic chip) to control the interaction of the blood with a solution containing a high molecular weight polymer (e.g., dextran) to achieve separation.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: December 8, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Jessica Godin Karp, Xiaohui Chen, Kashan Ali Shaikh, Mengli Wang, Ralf Lenigk, Christine Lynne Surrette
  • Patent number: 10830787
    Abstract: An accelerometer includes a membrane, an energy source producing a laser beam which is directed at the membrane causing it to vibrate, and a transparent cap disposed at one end of the energy source. The accelerometer includes a first controller for adjusting an output power of the energy source in a first feedback loop, a second controller for controlling the wavelength of the laser beam in a second feedback loop, and a detector sensing a reflected portion of the laser beam. An acceleration signal is based in part on the frequency of the reflected portion of the laser beam.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: William Albert Challener, Mengli Wang
  • Publication number: 20200242496
    Abstract: Determining a quality score for a part manufactured by an additive manufacturing machine based on build parameters and sensor data without the need for extensive physical testing of the part. Sensor data is received from the additive manufacturing machine during manufacture of the part using a first set of build parameters. The first set of build parameters is received. A first algorithm is applied to the first set of build parameters and the received sensor data to generate a quality score. The first algorithm is trained by receiving a reference derived from physical measurements performed on at least one reference part built using a reference set of build parameters. The quality score is output via the communication interface of the device.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Lembit SALASOO, Vipul K. GUPTA, Xiaohu PING, Subhrajit ROYCHOWDHURY, Justin GAMBONE, JR., Naresh IYER, Xiaolei SHI, Mengli WANG
  • Publication number: 20190257853
    Abstract: An accelerometer includes a membrane, an energy source producing a laser beam which is directed at the membrane causing it to vibrate, and a transparent cap disposed at one end of the energy source. The accelerometer includes a first controller for adjusting an output power of the energy source in a first feedback loop, a second controller for controlling the wavelength of the laser beam in a second feedback loop, and a detector sensing a reflected portion of the laser beam. An acceleration signal is based in part on the frequency of the reflected portion of the laser beam.
    Type: Application
    Filed: May 1, 2018
    Publication date: August 22, 2019
    Applicant: General Electric Company
    Inventors: William Albert Challener, Mengli Wang
  • Patent number: 10139259
    Abstract: A system for metering gas a fluid stream includes a primary conduit and a secondary conduit coupled to the primary conduit such that the secondary conduit receives a portion of a fluid stream passing through the primary conduit. A flow manager disposed in the primary conduit is configured to maintain a predetermined relationship between at least one first physical characteristic of the fluid stream and at least one second physical characteristic of the portion of the fluid stream. A sensor measures a flow characteristic of the portion of the fluid stream and a processor determines a flow parameter of the fluid stream based, at least in part, on the predetermined relationship and one of an amplitude or temporal characteristic of the electrical signal.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 27, 2018
    Assignee: General Electric Company
    Inventors: Nannan Chen, Ertugrul Berkcan, Mengli Wang, Roman Leon Artiuch
  • Publication number: 20170276527
    Abstract: A system for metering gas includes a flow sensor and a controller. The flow sensor is disposed in a conduit in fluid connection with a flow of a gas through the conduit. The flow sensor includes a heater and a temperature sensing element, and generates an electrical output based on the flow of the gas. The controller controls operation of the heater and is operable in a pre-measurement mode and multiple measurement modes. The controller in the pre-measurement mode operates the heater at a pre-measurement setting. The controller in the measurement modes operates the heater at corresponding measurement settings that have increased power levels and/or increased operating durations relative to the pre-measurement setting. The controller in the measurement modes is configured to determine a flow rate of the gas based on an amplitude characteristic and/or a temporal characteristic of the electrical output of the flow sensor.
    Type: Application
    Filed: March 25, 2016
    Publication date: September 28, 2017
    Inventors: Cheng-Po Chen, Nannan Chen, Mengli Wang
  • Publication number: 20170153223
    Abstract: A device and/or methodology are described that include a mechanism for separating erythrocytes from other constituents of blood and for purifying leukocytes from blood. The separation and purification aspects may be provided in separate components or within the same component. The separation aspect assists in separating erythrocytes (red blood cells) from other cells in blood, such as by aggregation of the red blood cells. A suitable aggregation device or device component uses chambers with at least one small dimension (e.g., a microfluidic chip) to control the interaction of the blood with a solution containing a high molecular weight polymer (e.g., dextran) to achieve separation.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Jessica Godin Karp, Xiaohui Chen, Kashan Ali Shaikh, Mengli Wang, Ralf Lenigk, Christine Lynne Surrette
  • Publication number: 20170038237
    Abstract: A system for metering gas a fluid stream includes a primary conduit and a secondary conduit coupled to the primary conduit such that the secondary conduit receives a portion of a fluid stream passing through the primary conduit. A flow manager disposed in the primary conduit is configured to maintain a predetermined relationship between at least one first physical characteristic of the fluid stream and at least one second physical characteristic of the portion of the fluid stream. A sensor measures a flow characteristic of the portion of the fluid stream and a processor determines a flow parameter of the fluid stream based, at least in part, on the predetermined relationship and one of an amplitude or temporal characteristic of the electrical signal.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Nannan Chen, Ertugrul Berkcan, Mengli Wang, Roman Leon Artiuch
  • Patent number: 9150907
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. The fluidic connectors are thin film fluidic connectors capable of connecting to a fluid delivery system. The subassembly may be sealed against a solid support to form a flow cell. Methods of use are also disclosed.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: October 6, 2015
    Assignee: General Electric Company
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Patent number: 9080941
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: July 14, 2015
    Assignee: General Electric Company
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Publication number: 20150150462
    Abstract: A photoacoustic transducer assembly for imaging a subject of interest is presented. Furthermore, the photoacoustic transducer assembly includes a substrate. In addition, the photoacoustic transducer assembly includes a first plurality of source elements disposed on one or more sides of the substrate, wherein the first plurality of source elements is arranged along a periphery of the one or more sides of the substrate and configured to irradiate a region of interest in the subject of interest. Moreover, the photoacoustic transducer assembly also includes a plurality of detector elements disposed on the one or more sides of the substrate, wherein the plurality of detector elements is surrounded by the first plurality of source elements and configured to detect one or more signals generated by the region of interest in response to the irradiation.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 4, 2015
    Applicant: General Electric Company
    Inventor: Mengli Wang
  • Publication number: 20140248618
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. The fluidic connectors are thin film fluidic connectors capable of connecting to a fluid delivery system. The subassembly may be sealed against a solid support to form a flow cell. Methods of use are also disclosed.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner
  • Publication number: 20140248617
    Abstract: A microfluidic flow cell subassembly, which may be assembled into a flow cell having fluidic connections outside of the main substrate, is described for encapsulating a sample to allow for subsequent controlled delivery of reagents to the sample, such as multiplexed in situ biomarker staining and analysis. As configured, the subassembly comprises a substrate layer forms a flexible optically transparent lid which is capable of bending in either direction to alter the internal dimensions of the subassembly. Methods of use are also disclosed.
    Type: Application
    Filed: May 14, 2014
    Publication date: September 4, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kashan Ali Shaikh, Mengli Wang, Adriana Ines Larriera Moreno, Jessica Godin Karp, Christine Lynne Pitner