Patents by Inventor Meredith B. Colket, III

Meredith B. Colket, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9541000
    Abstract: A method for reducing emissions from an engine includes generating a light hydrocarbon fuel fraction and combusting the light hydrocarbon fuel fraction in place of the fuel. The light hydrocarbon fuel fraction is generated by heating the fuel and flowing the fuel through a plurality of hollow fiber superhydrophobic membranes in a membrane module. Each hollow superhydrophobic membrane comprises a porous support and a superhydrophobic layer free of pores that extend from one side of the superhydrophobic layer to the other. Vapor from the fuel permeates the superhydrophobic membranes and enters a distillate collection chamber, producing a distilled fuel in the distillate collection chamber and a residual fuel within the hollow fiber superhydrophobic membranes. The residual fuel is removed from the membrane module and cooled to produce a cooled residual fuel.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 10, 2017
    Assignee: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Publication number: 20140290610
    Abstract: A fuel system is provided including a diesel fuel reservoir configured to supply a diesel fuel having a first amount of dissolved oxygen. An advanced diesel engine is arranged generally downstream from the diesel fuel reservoir. A deoxygenation system has an inlet fluidly coupled to the diesel fuel reservoir and an outlet fluidly coupled to the advanced diesel engine. The deoxygenation system is configured to remove dissolved oxygen from the diesel fuel. The diesel fuel provided to the advanced diesel engine has a second amount of dissolved oxygen. The second amount of dissolved oxygen is less than the first amount of dissolved oxygen.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Haralambos Cordatos, Meredith B. Colket, III
  • Publication number: 20140053570
    Abstract: A method for reducing emissions from an engine includes generating a light hydrocarbon fuel fraction and combusting the light hydrocarbon fuel fraction in place of the fuel. The light hydrocarbon fuel fraction is generated by heating the fuel and flowing the fuel through a plurality of hollow fiber superhydrophobic membranes in a membrane module. Each hollow superhydrophobic membrane comprises a porous support and a superhydrophobic layer free of pores that extend from one side of the superhydrophobic layer to the other. Vapor from the fuel permeates the superhydrophobic membranes and enters a distillate collection chamber, producing a distilled fuel in the distillate collection chamber and a residual fuel within the hollow fiber superhydrophobic membranes. The residual fuel is removed from the membrane module and cooled to produce a cooled residual fuel.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Patent number: 8603300
    Abstract: A method for fractionating a fuel includes heating the fuel and flowing it through hollow superhydrophobic membranes in a membrane module. Vapor from the fuel permeates the hydrophobic membranes and enters a distillate collection chamber, producing distilled fuel and residual fuel. The residual fuel is removed from the module and cooled. The cooled residual fuel is flowed through hollow tubes in the module and the distilled fuel is removed from the distillate collection chamber. Burning the distilled fuel reduces engine emissions. A fuel fractionation system includes a distillate collection chamber, hollow superhydrophobic membranes, hollow tubes and a distillate outlet. The hollow superhydrophobic membranes receive heated fuel and allow vapor from the heated fuel to permeate the membranes and enter the distillate collection chamber. The hollow tubes receive cooled residual fuel and are positioned to allow vapor in the distillate collection chamber to condense on outer surfaces of the hollow tubes.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 10, 2013
    Assignee: United Technologies Corporation
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Patent number: 8602772
    Abstract: A method is provided for commissioning a combustion control system for controlling operation of a boiler combustion system. The method includes the step of mapping a plurality of sets of coordinated servo positions for the fuel flow control device and the air flow control device at a plurality of selected firing rate points between a minimum firing rate and a maximum firing rate by using an algorithm and an iterative process to identify the coordinated air and fuel actuator positions instead of a trial and error method.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: December 10, 2013
    Assignee: UTC Fire & Security Corporation
    Inventors: Junqiang Fan, Muhidin A. Lelic, Guido Poncia, David S. Liscinsky, Meredith B. Colket, III, Tom Kennedy
  • Publication number: 20130291552
    Abstract: A system for electrically controlling combustion includes a combustion chamber, one or more sensors, an actuator, and a controller. The controller detects dynamic instabilities based upon input regarding conditions in the combustion chamber from the sensors. The actuator electrically modulates combustion, and the controller operates the actuator to counteract the dynamic instabilities.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Lance L. Smith, Meredith B. Colket, III
  • Publication number: 20130263572
    Abstract: A gas turbine or rocket engine hot section includes a first duct case, a second duct case, a plurality of vanes arranged about an axial centerline, and an igniter located with a first of the plurality of vanes. The first of the plurality of vanes extends axially between a leading edge and a flame holder surface at a trailing edge. The flame holder surface extends radially between a first vane end connected to the first duct case and a second vane end connected to the second duct case. The flame holder surface includes a first section that tapers towards the first vane end, and a second section that tapers away from the first section and towards the second vane end.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 10, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Jeffery A. Lovett, Donald J. Hautman, Torence P. Brogan, Christopher A. Eckett, Meredith B. Colket, III
  • Patent number: 8534071
    Abstract: A gas turbine or rocket engine hot section includes a first duct case, a second duct case, a plurality of vanes arranged about an axial centerline, and an igniter located with a first of the plurality of vanes. The first of the plurality of vanes extends axially between a leading edge and a flame holder surface at a trailing edge. The flame holder surface extends radially between a first vane end connected to the first duct case and a second vane end connected to the second duct case. The flame holder surface includes a first section that tapers towards the first vane end, and a second section that tapers away from the first section and towards the second vane end.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: September 17, 2013
    Assignee: United Technologies Corporation
    Inventors: Jeffrey A. Lovett, Donald J. Hautman, Torence P. Brogan, Christopher A. Eckett, Meredith B. Colket, III
  • Publication number: 20130071793
    Abstract: A method for fractionating a fuel includes heating the fuel and flowing it through hollow superhydrophobic membranes in a membrane module. Vapor from the fuel permeates the hydrophobic membranes and enters a distillate collection chamber, producing distilled fuel and residual fuel. The residual fuel is removed from the module and cooled. The cooled residual fuel is flowed through hollow tubes in the module and the distilled fuel is removed from the distillate collection chamber. Burning the distilled fuel reduces engine emissions. A fuel fractionation system includes a distillate collection chamber, hollow superhydrophobic membranes, hollow tubes and a distillate outlet. The hollow superhydrophobic membranes receive heated fuel and allow vapor from the heated fuel to permeate the membranes and enter the distillate collection chamber. The hollow tubes receive cooled residual fuel and are positioned to allow vapor in the distillate collection chamber to condense on outer surfaces of the hollow tubes.
    Type: Application
    Filed: September 15, 2011
    Publication date: March 21, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Zidu Ma, Joseph J. Sangiovanni, Zissis A. Dardas, Meredith B. Colket, III
  • Patent number: 8209987
    Abstract: A gas turbine engine augmenter has a gas flowpath. A number of vanes extend into the gas flowpath. A number of augmenter fuel conduits have outlets along at least some of the vanes. At least one burner discharge outlet is along at least one of the vanes for discharging a pilot gas.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: July 3, 2012
    Assignee: United Technologies Corporation
    Inventors: Donald J. Hautman, Meredith B. Colket, III, Jeffery A. Lovett, Torence P. Brogan
  • Publication number: 20110162591
    Abstract: A method is provided for commissioning a combustion control system for controlling operation of a boiler combustion system. The method includes the step of mapping a plurality of sets of coordinated servo positions for the fuel flow control device and the air flow control device at a plurality of selected firing rate points between a minimum firing rate and a maximum firing rate by using an algorithm and an iterative process to identify the coordinated air and fuel actuator positions instead of a trial and error method.
    Type: Application
    Filed: February 20, 2008
    Publication date: July 7, 2011
    Inventors: Jinqiang Fan, Muhidin A. Lelic, Guido Poncia, David S. Liscinsky, Meredith B. Colket, III, Tom Kennedy
  • Patent number: 7947233
    Abstract: A method of combusting a catalyzed hydrocarbon fuel comprising providing a first fluid and a second fluid, at least one of said fluids comprising a mixture of a hydrocarbon fuel with an air stream, passing the first fluid into one or more catalytic tubes of a catalytic reactor, and passing the second fluid adjacent the catalytic tubes in a chamber of a catalytic reactor. A varying tube cross section to modify the flow of one of the fluids is provided for at least a portion of the tube. The flow of the first fluid leaving the catalytic tubes is mixed with the second fluid and combusted.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: May 24, 2011
    Assignee: United Technologies Corporation
    Inventors: Steven W. Burd, Meredith B. Colket, III
  • Publication number: 20100223849
    Abstract: A method of combusting a catalyzed hydrocarbon fuel comprising providing a first fluid and a second fluid, at least one of said fluids comprising a mixture of a hydrocarbon fuel with an air stream, passing the first fluid into one or more catalytic tubes of a catalytic reactor, and passing the second fluid adjacent the catalytic tubes in a chamber of a catalytic reactor. A varying tube cross section to modify the flow of one of the fluids is provided for at least a portion of the tube. The flow of the first fluid leaving the catalytic tubes is mixed with the second fluid and combusted.
    Type: Application
    Filed: April 16, 2010
    Publication date: September 9, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Steven W. Burd, Meredith B. Colket, III
  • Patent number: 7727495
    Abstract: A catalyst conduit for a catalytic reactor of a turbine combustor, the conduit comprising a tube including an inlet and an outlet, and a wall with an interior surface and an exterior surface. The tube contains a variation in its cross sectional area along at least a portion of its length to change a property of a fluid flowing adjacent the wall of the tube. An oxidation catalyst is deposited on at least a portion of the tube.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: June 1, 2010
    Assignee: United Technologies Corporation
    Inventors: Steven W. Burd, Meredith B. Colket, III
  • Publication number: 20100126177
    Abstract: A gas turbine engine augmenter has a gas flowpath. A number of vanes extend into the gas flowpath. A number of augmenter fuel conduits have outlets along at least some of the vanes. At least one burner discharge outlet is along at least one of the vanes for discharging a pilot gas.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Donald J. Hautman, Meredith B. Colket, III, Jeffery A. Lovett, Torence P. Brogan
  • Patent number: 7444820
    Abstract: A gas turbine engine using a rich-lean catalytic combustion system includes a rich catalytic burner and a lean catalytic burner. The rich catalytic burner includes a rich catalytic reactor and a heat exchanger. The rich catalytic reactor catalytically burns a fuel rich mixture to provide a heated fuel. The heat exchanger receives a stream of air that absorbs a portion of the heat from the catalytic burning of the fuel rich mixture to keep the reaction in the rich catalytic reactor at or below a threshold temperature. A resulting heated air from the heat exchanger and the heated fuel are mixed in a mixing zone to provide a heated fuel-air mixture. The lean catalytic burner receives and burns the heated fuel-air mixture.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: November 4, 2008
    Assignee: United Technologies Corporation
    Inventor: Meredith B. Colket, III
  • Patent number: 5318436
    Abstract: An improved method of burning a hydrocarbon fuel in a combustion system includes burning the fuel in a main burner under fuel-lean conditions to produce a main flame and burning a low heating value fuel in a pilot burner to stabilize the main flame and limit the amount of NO.sub.x produced in the pilot burner. The pilot fuel can inherently have a low heating value, can be a diluted high heating value fuel, or can be made by partially oxidizing a high heating value fuel. An improved combustion system for burning a hydrocarbon fuel with limited NO.sub.x emissions has a main burner, a pilot burner, and a partial oxidation stage capable of converting a high heating value fuel to a low heating value fuel in a partial oxidation reaction. The system also has means for burning the low heating value fuel in the pilot burner. The system can include means for removing heat from the partial oxidation stage or low heating value fuel to lower the temperature of the pilot flame.
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: June 7, 1994
    Assignee: United Technologies Corporation
    Inventors: Meredith B. Colket, III, Daniel J. Seery, Joseph J. Sangiovanni
  • Patent number: 5235804
    Abstract: A method of combusting a hydrocarbon fuel includes mixing the fuel with a first air stream to form a fuel/air mixture having an equivalence ratio of greater than 1 and partially oxidizing the fuel by contacting it with an oxidation catalyst to generate a heat of reaction and a partial oxidation product stream. The partial oxidation product stream is mixed with a second air stream and completely combusted in a main combustor at a condition at which appreciable quantities of thermal NO.sub.x are not formed to generate an effluent gas stream, thereby generating an effluent gas stream containing decreased amounts of thermal and prompt NO.sub.x. A system for combusting a hydrocarbon fuel includes, in combination, means for mixing the fuel with a first air stream, a catalytic oxidation stage containing an oxidation catalyst, means for mixing the partial oxidation product stream with a second air stream, and a main combustor capable of completely combusting the partial oxidation product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: August 17, 1993
    Assignee: United Technologies Corporation
    Inventors: Meredith B. Colket, III, Arthur S. Kesten, Joseph J. Sangiovanni, Martin F. Zabielski, Dennis R. Pandy, Daniel J. Seery
  • Patent number: 5176814
    Abstract: A heat source, may be on a high speed vehicle, may be cooled by transferring thermal energy from the heat source to an endothermic fuel decomposition catalyst in order to heat the catalyst to a temperature sufficient to crack or dissociate at least a portion of an endothermic fuel stream. The endothermic fuel is selected from the group consisting of normal paraffinic hydrocarbons and methanol. The heated endothermic fuel decomposition catalyst is contacted with the endothermic fuel stream at a liquid hourly space velocity of at least about 10 hr.sup.-1 to cause the endothermic fuel stream to crack or dissociate into a reaction product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: January 5, 1993
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney, Meredith B. Colket, III, Alvin B. Stiles
  • Patent number: 5151171
    Abstract: A heat source, which may be on a high speed vehicle, may be cooled by transferring thermal energy from the heat source to an endothermic fuel decomposition catalyst to heat the catalyst to a temperature sufficient to crack at least a portion of an endothermic fuel stream. The endothermic fuel is selected from the group consisting of isoparaffinic hydrocarbons, blends of normal and isoparaffinic hydrocarbons, and conventional aircraft turbine fuels. The heated endothermic fuel decomposition catalyst is contacted with the endothermic fuel stream at a liquid hourly space velocity of at least about 10 hr.sup.-1 to cause the endothermic fuel stream to crack into a reaction product stream.
    Type: Grant
    Filed: May 15, 1991
    Date of Patent: September 29, 1992
    Assignee: United Technologies Corporation
    Inventors: Louis J. Spadaccini, Pierre J. Marteney, Meredith B. Colket, III