Patents by Inventor Meredith E. Stone

Meredith E. Stone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11284830
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: March 29, 2022
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Meredith E. Stone, Qingguo Zeng, Jeffrey B. Adair, Connor S. Edel, Ping Jia, Kevin R. Ponziani, Brian P. George, Ryan M. Bokan, Matthew J. Sabo, Vladimir A. Turovskiy, Ketal C. Patel, Charulatha Ramanathan
  • Patent number: 10575749
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: March 3, 2020
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Qing Lou, Meredith E. Stone, Qingguo Zeng, Jeffrey B. Adair, Connor S. Edel, Ping Jia, Kevin R. Ponziani, Brian P. George, Ryan M. Bokan, Matthew J. Sabo, Vladimir A. Turovskiy, Ketal C. Patel, Charulatha Ramanathan
  • Patent number: 10426401
    Abstract: An example method includes receiving monitoring data representing one or more substantially real time electrical signals based on measurements from one or more respective electrodes. The method also includes selecting at least one signal of interest (SOI) from the monitoring data, each selected SOI being associated with a respective anatomical location and storing SOI data in memory corresponding to each selected SOI. The method also includes quantifying changes between signal characteristics of real time signals acquired for one or more respective anatomical locations and the at least one SOI that is associated with each of the respective anatomical locations. An output can be generated based on the quantifying to characterize spatially local signal changes with respect to each of the respective anatomical locations.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 1, 2019
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Ryan Bokan, Charulatha Ramanathan, Ping Jia, Meredith E. Stone
  • Patent number: 10376173
    Abstract: An example method includes performing amplitude-based detection to determine location of R-peaks for a plurality of electrograms. The method also includes performing wavelet-based detection to determine location of R-peaks for the plurality of electrograms. The method also includes adjusting the location of the R-peaks determined by the wavelet-based detection of R-peaks based on the location of R-peaks determined by the amplitude-based detection of R-peaks. The method also includes storing, in memory, R-peak location data to specify R-peak locations for the plurality of electrograms based on the adjusting.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 13, 2019
    Assignee: CARDIOINSIGHT TECHNOLOGIES, INC.
    Inventors: Brian P. George, Meredith E. Stone, Qingguo Zeng, Qing Lou, Connor S. Edel, Ping Jia, Jeffrey B. Adair, Vladimir A. Turovskiy, Matthew J. Sabo, Ryan M. Bokan, Ketal C. Patel, Charulatha Ramanathan, John E. Anderson, Andrew E. Hoover, Cheng Yao
  • Publication number: 20170319089
    Abstract: An example method includes analyzing morphology and/or amplitude of each of a plurality of electrophysiological signals across a surface of a patient's body to identify candidate segments of each signal satisfying predetermined conduction pattern criteria. The method also includes determining a conduction timing parameter for each candidate segment in each of the electrophysiological signals.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 9, 2017
    Inventors: QING LOU, MEREDITH E. STONE, QINGGUO ZENG, JEFFREY B. ADAIR, CONNOR S. EDEL, PING JIA, KEVIN R. PONZIANI, BRIAN P. GEORGE, RYAN M. BOKAN, MATTHEW J. SABO, VLADIMIR A. TUROVSKIY, KETAL C. PATEL, CHARULATHA RAMANATHAN
  • Publication number: 20170319088
    Abstract: An example method includes performing amplitude-based detection to determine location of R-peaks for a plurality of electrograms. The method also includes performing wavelet-based detection to determine location of R-peaks for the plurality of electrograms. The method also includes adjusting the location of the R-peaks determined by the wavelet-based detection of R-peaks based on the location of R-peaks determined by the amplitude-based detection of R-peaks. The method also includes storing, in memory, R-peak location data to specify R-peak locations for the plurality of electrograms based on the adjusting.
    Type: Application
    Filed: April 27, 2017
    Publication date: November 9, 2017
    Inventors: BRIAN P. GEORGE, MEREDITH E. STONE, QINGGUO ZENG, QING LOU, CONNOR S. EDEL, PING JIA, JEFFREY B. ADAIR, VLADIMIR A. TUROVSKIY, MATTHEW J. SABO, RYAN M. BOKAN, KETAL C. PATEL, CHARULATHA RAMANATHAN, JOHN E. ANDERSON, ANDREW E. HOOVER, CHENG YAO
  • Publication number: 20160058369
    Abstract: An example method includes receiving monitoring data representing one or more substantially real time electrical signals based on measurements from one or more respective electrodes. The method also includes selecting at least one signal of interest (SOI) from the monitoring data, each selected SOI being associated with a respective anatomical location and storing SOI data in memory corresponding to each selected SOI. The method also includes quantifying changes between signal characteristics of real time signals acquired for one or more respective anatomical locations and the at least one SOI that is associated with each of the respective anatomical locations. An output can be generated based on the quantifying to characterize spatially local signal changes with respect to each of the respective anatomical locations.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 3, 2016
    Inventors: RYAN BOKAN, Charulatha Ramanathan, Ping Jia, Meredith E. Stone