Patents by Inventor Merrill Anderson Wilson

Merrill Anderson Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8114193
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 14, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias Van Doorn, Merrill Anderson Wilson
  • Publication number: 20110233470
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Application
    Filed: January 18, 2008
    Publication date: September 29, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Patent number: 7595019
    Abstract: Method of making an electrochemical device for the recovery of oxygen from an oxygen-containing feed gas comprising (a) preparing a green electrochemical device by assembling a green electrolyte layer, a green anode layer in contact with the green electrolyte layer, a green cathode layer in contact with the green electrolyte layer, a green anode-side gas collection interconnect layer in contact with the green anode layer, and a green cathode-side feed gas distribution interconnect layer in contact with the green cathode layer; and (b) sintering-the green electrochemical device by heating to yield a sintered electrochemical device comprising a plurality of sintered layers including a sintered anode-side gas collection interconnect layer in contact with the anode layer and adapted to collect oxygen permeate gas, wherein each sintered layer is bonded to an adjacent sintered layer during sintering.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 29, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Raymond Ashton Cutler, Kent Neal Hutchings, Merrill Anderson Wilson, Ronald Almy Hollis, Dale M. Taylor
  • Patent number: 7513932
    Abstract: Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: April 7, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Kathryn Beverly Dyer, legal representative, Merrill Anderson Wilson, Ted R. Ohrn, Kurt E. Kneidel, David Peterson, Christopher M. Chen, Keith Gerard Rackers, Paul Nigel Dyer
  • Patent number: 7335247
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 26, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Patent number: 7279027
    Abstract: Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: October 9, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Kathryn Beverly Dyer, legal representative, Merrill Anderson Wilson, Ted R. Ohm, Kurt E. Kneidel, David Peterson, Christopher M. Chen, Keith Gerard Rackers, Paul Nigel Dyer, deceased
  • Patent number: 7179323
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: February 20, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Publication number: 20040186018
    Abstract: Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Michael Francis Carolan, Paul Nigel Dyer, Kathryn Beverly Dyer, Merrill Anderson Wilson, Ted R. Ohrn, Kurt E. Kneidel, David Peterson, Christopher M. Chen, Keith Gerard Rackers
  • Patent number: 6117288
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 14, 1998
    Date of Patent: September 12, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 6042703
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: March 28, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Raymond Ashton Cutler, Brett Tamatea Henderson, Jimmy Ludlow, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5868918
    Abstract: An electrochemical device for separating oxygen from an oxygen-containing gas comprises a plurality of planar ion-conductive solid electrolyte plates and electrically-conductive gas-impermeable interconnects assembled in a multi-cell stack. Electrically-conductive anode and cathode material is applied to opposite sides of each electrolyte plate. A gas-tight anode seal is bonded between the anode side of each electrolyte plate and the anode side of the adjacent interconnect. A biasing electrode, applied to the anode side of each electrolyte plate between the anode seal and the edge of the anode, eliminates anode seal failure by minimizing the electrical potential across the seal. The seal potential is maintained below about 40 mV and preferably below about 25 mV. A gas-tight seal is applied between the cathode sides of each electrolyte plate and the adjacent interconnect such that the anode and cathode seals are radially offset on opposite sides of the plate.
    Type: Grant
    Filed: September 26, 1996
    Date of Patent: February 9, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stuart Adler, Brett Tamatea Henderson, Robin Edward Richards, Dale M. Taylor, Merrill Anderson Wilson
  • Patent number: 5750279
    Abstract: An electrochemical device is disclosed comprising a plurality of planar electrolytic cells connected in series, each cell having an oxygen ion-conducting electrolyte layer, an anode layer and a cathode layer associated with the electrolyte layer, electrically conductive interconnect layers having gas passages situated therein for transporting gaseous streams, which interconnect layers electrically connect the anode layer of each electrolytic cell to the cathode layer of an adjacent planar cell, and sealing means positioned between the interconnect layers and the electrolytic cells to provide a gas-tight seal therebetween. The configuration of the interconnect layer and the placement of the seal means provides a separation between the seal and the conductive pathway of electrons between the anode layer and cathode layer which prevents corrosion or deterioration of the seal.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: May 12, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Paul Nigel Dyer, Eric Minford, Steven Lee Russek, Merrill Anderson Wilson, Dale M. Taylor, Brett Tamatea Henderson
  • Patent number: 5681373
    Abstract: Planar solid-state membrane modules for separating oxygen from an oxygen-containing gaseous mixture which provide improved pneumatic and structural integrity and ease of manifolding. The modules are formed from a plurality of planar membrane units, each membrane unit which comprises a channel-free porous support having connected through porosity which is in contact with a contiguous dense mixed conducting oxide layer having no connected through porosity. The dense mixed conducting oxide layer is placed in flow communication with the oxygen-containing gaseous mixture to be separated and the channel-free porous support of each membrane unit is placed in flow communication with one or more manifolds or conduits for discharging oxygen which has been separated from the oxygen-containing gaseous mixture by permeation through the dense mixed conducting oxide layer of each membrane unit and passage into the manifolds or conduits via the channel-free porous support of each membrane unit.
    Type: Grant
    Filed: March 13, 1995
    Date of Patent: October 28, 1997
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Dale M. Taylor, Jeffrey Donald Bright, Michael Francis Carolan, Raymond Ashton Cutler, Paul Nigel Dyer, Eric Minford, David W. Prouse, Robin Edward Richards, Steven L. Russek, Merrill Anderson Wilson