Patents by Inventor Miao Cai

Miao Cai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8534136
    Abstract: Systems and methods for performing pin-pull testing of a printed circuit board (PCB) are presented. The pin-pull testing generally involves the use of a standard tensile tester that is useful for performing other tests aside from pin-pull testing. In this regard, a non-specific pin may be used in conjunction with the tensile tester without the need to purchase or manufacture pins specially adapted for use with a specially designed tensile tester. Additionally, the pin-pull testing may include application of heat to the pin by way of an external heat supply such that the need of a heater integrated into the testing device to heat a pin during the testing may be eliminated. As such, a common heating element (e.g., a standard soldering iron) may be employed by applying heat to a pin directly with the external heat supply.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 17, 2013
    Assignee: Flextronics AP, LLC.
    Inventors: Dongji Xie, Miao Cai, Boyi Wu
  • Patent number: 8441333
    Abstract: A stacked inductor with different metal thickness and metal width. The stacked inductor comprises top and bottom metal traces which are aligned with each other. The thickness and width of the top and bottom metal traces are different. The top and bottom metal traces are connected at the end of metal trace with via holes. The inductance is increased with the use of the mutual inductance between top and bottom metal layers The parasitic resistor is reduced due to the difference of the top and bottom metal widths.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: May 14, 2013
    Assignee: Shanghai Hua Hong NEC Electronics Company, Limited
    Inventors: Tzuyin Chiu, Xiangming Xu, Miao Cai
  • Patent number: 8289118
    Abstract: A stacked inductor with combined metal layers is represented in this invention. The stacked inductor includes: a top layer metal coil, and at least two lower layer metal coils, the metal coils being aligned with each other; adjacent metal coils being connected at the corresponding ends through a via; wherein, each of the lower layer metal coils is consisted of plural layers of metal lines which are interconnected. With the same chip area, the stacked inductor of the present invention can achieve higher inductance and Q factor because of the mutual inductance generated from the plural layers of metal lines and the reduced parasitic resistance.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventors: Tzuyin Chiu, Xiangming Xu, Miao Cai
  • Publication number: 20110239775
    Abstract: Systems and methods for performing pin-pull testing of a printed circuit board (PCB) are presented. The pin-pull testing generally involves the use of a standard tensile tester that is useful for performing other tests aside from pin-pull testing. In this regard, a non-specific pin may be used in conjunction with the tensile tester without the need to purchase or manufacture pins specially adapted for use with a specially designed tensile tester. Additionally, the pin-pull testing may include application of heat to the pin by way of an external heat supply such that the need of a heater integrated into the testing device to heat a pin during the testing may be eliminated. As such, a common heating element (e.g., a standard soldering iron) may be employed by applying heat to a pin directly with the external heat supply.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: FLEXTRONICS AP, LLC
    Inventors: Dongji Xie, MIAO CAI, Boyi Wu
  • Publication number: 20110133875
    Abstract: A stacked inductor with different metal thickness and metal width is represented in this invention, this structure comprise: top and bottom metal trace, which is aligned with each other. The thickness and width of top and bottom metal trace are different. The top and bottom metal trace are connected at the end of metal trace with via holes. The inductance is increased with the use of the mutual inductance between top and bottom metal layers, and the parasitic resistor is reduced by means of different top and bottom metal width. This stacked inductor possesses larger inductance than single layer spiral inductor with relatively higher Q factor.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 9, 2011
    Inventors: Tzuyin CHIU, Xiangming Xu, Miao Cai
  • Publication number: 20110133876
    Abstract: A manufacture method for IC process with top and top-1 metal layers thickened and stacked inductor manufactured by this method is represented in this invention. This method includes: with multi metal layers, and the thickness of top and top-1 metal layers are more than 2.8 um. Thickened top and top-1 metal layers can reduce the resistance of top and top-1 metal layers, so can increase the Q factor of inductor.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Inventors: Tzuyin CHIU, Xiangming XU, Miao CAI, Shengrong WANG
  • Publication number: 20110133879
    Abstract: A stacked inductor with combined metal layers is represented in this invention. The stacked inductor includes: a top layer metal coil, and at least two lower layer metal coils, the metal coils being aligned with each other; adjacent metal coils being connected at the corresponding ends through a via; wherein, each of the lower layer metal coils is consisted of plural layers of metal lines which are interconnected. With the same chip area, the stacked inductor of the present invention can achieve higher inductance and Q factor because of the mutual inductance generated from the plural layers of metal lines and the reduced parasitic resistance.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 9, 2011
    Applicant: SHANGHAI HUA HONG NEC ELECTRONICS CO., LTD.
    Inventors: Tzuyin CHIU, Xiangming Xu, Miao Cai
  • Publication number: 20110133878
    Abstract: A structure of stack differential inductor is represented in this invention; this structure includes top and bottom metal traces, which are aligned with each other and symmetric. Starting from one port and after half turn, the top metal trace is connected to bottom metal trace through via holes. Meanwhile, after another half turn, the bottom trace is connected to top trace through via holes. The inductance is increased by means of this method. With the same chip area, this stack differential inductor possesses larger inductance and higher Q factor because of the larger mutual inductance between top and bottom metal than conventional differential inductor.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Inventors: Tzuyin CHIU, Xiangming Xu, Miao Cai
  • Publication number: 20110133877
    Abstract: A multi-path stacked inductor for current compensation is represented in this invention. This structure includes top and bottom metal trace, which are aligned with each other. Each metal trace consists of multi paths. The inner path in top metal flips over to the outer path in the bottom metal, while the outer path in top metal flips over to the inner path in the bottom metal. These paths join together at the end of the metal trace with via holes. Skin effect and current crowding effect are reduced by means of this method. This stacked inductor possesses larger inductance than single layer spiral inductor, with relatively higher Q factor.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 9, 2011
    Inventors: Tzuyin CHIU, Xiangming Xu, Miao Cai