Patents by Inventor Miaolei YAN
Miaolei YAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240000341Abstract: A head mounted device may include one or more interferometric sensors positioned and oriented in a housing to sense particle movement caused by respiration of a user. Interferometric signals from the one or more interferometric sensors may be used to determine respiration information about the user.Type: ApplicationFiled: May 25, 2023Publication date: January 4, 2024Inventors: Miaolei Yan, Tong Chen, Nicholas C. Soldner
-
Patent number: 11774342Abstract: Various sensors, including particulate matter sensors, are described. One particulate matter sensor includes a self-mixing interferometry sensor and a set of one or more optical elements. The set of one or more optical elements is positioned to receive an optical emission of the self-mixing interferometry sensor, split the optical emission into multiple beams, and direct each beam of the multiple beams in a different direction. The self-mixing interferometry sensor is configured to generate particle speed information for particles passing through respective measurement regions of the multiple beams.Type: GrantFiled: March 27, 2020Date of Patent: October 3, 2023Assignee: Apple Inc.Inventors: Mehmet Mutlu, Miaolei Yan, Michael K. Brown, Richard Yeh
-
Patent number: 11680788Abstract: A portable electronic device is operable in a particulate matter concentration mode where the portable electronic device uses a self-mixing interferometry sensor to emit a beam of coherent light from an optical resonant cavity, receive a reflection or backscatter of the beam into the optical resonant cavity, produce a self-mixing signal resulting from a reflection or backscatter of the beam of coherent light, and determine a particle velocity and/or particulate matter concentration using the self-mixing signal. The portable electronic device is also operable in an absolute distance mode where the portable electronic device determines whether or not an absolute distance determined using the self-mixing signal is outside or within a particulate sensing volume associated with the beam of coherent light. If not, the portable electronic device may determine a contamination and/or obstruction is present that may result in inaccurate particle velocity and/or particulate matter concentration determination.Type: GrantFiled: August 3, 2021Date of Patent: June 20, 2023Assignee: Apple Inc.Inventors: Mehmet Mutlu, Miaolei Yan
-
Patent number: 11351285Abstract: A portable communication device includes an apparatus for environmental sensing. The apparatus includes a housing, one or more environmental sensors and an ozone source. The housing includes one or more ports for allowing air flow between the surrounding environment and a cavity of the housing. The environmental sensors are coupled to the housing and can sense an environmental agent included in the air flow. The ozone source can generate ozone gas within the cavity of the housing to decompose unwanted organic compounds inside the port.Type: GrantFiled: January 25, 2019Date of Patent: June 7, 2022Assignee: Apple Inc.Inventors: Michael K. Brown, Ashwin Balasubramanian, Miaolei Yan
-
Patent number: 11353390Abstract: A portable communication device includes one or more optical detectors to generate an analog signal in response to a change in an intra-cavity or an emitted optical power of a light source due to light backscattered from a particle and an application-specific integrated circuit (ASIC). The particle is illuminated via a light source. The ASIC includes an analog-to-digital converter (ADC) circuit, a digital delay circuit, a particle detector module and a processor. The ADC converts the analog signal to a digital signal. The digital delay circuit can store the digital signal for a predetermined or dynamically variable time interval. The particle detector module can analyze the digital signal and can generate an enable signal upon detecting a particle signature in the digital signal. The processor is coupled to the digital delay circuit and can start processing the digital signal in response to the enable signal.Type: GrantFiled: December 23, 2019Date of Patent: June 7, 2022Assignee: Apple Inc.Inventors: Miaolei Yan, Gregory B. Arndt, Mehmet Mutlu
-
Patent number: 11280774Abstract: A portable communication device includes one or more miniature sensors to sense one or more environmental gases. A processor is coupled to the miniature sensors and is configured to enhance location detection by determining a sensor signal transition. The sensor signal transition is caused by subsequent exposures of at least one of the miniature sensors to environmental gases of a first air composition and a second air composition. The first air composition and the second air composition are respectively associated with a first location and a second location.Type: GrantFiled: August 28, 2018Date of Patent: March 22, 2022Assignee: Apple Inc.Inventors: Miaolei Yan, Roberto M. Ribeiro, Richard Yeh
-
Patent number: 11280714Abstract: An apparatus for particulate matter (PM) measurement includes a first light source to generate a first light beam and a second light source disposed at a first distance from the first light source to generate a second light beam in parallel to the first light beam to illuminate a PM. The apparatus further includes a first light detector to measure a first timing corresponding to a first self-mixing signal resulting from a reflection and/or back-scattering of the first light beam from a PM, and a second light detector to measure a second timing corresponding to a second self-mixing signal resulting from a reflection and/or back-scattering of the second light beam from the PM. A processor can determine a first velocity of the PM based on a spatial separation between centers of the first light beam and the second light beam and a temporal separation between the first timing and the second timing.Type: GrantFiled: August 21, 2019Date of Patent: March 22, 2022Assignee: Apple Inc.Inventors: Omid Momtahan, Mehmet Mutlu, Miaolei Yan, Richard Yeh
-
Patent number: 11211515Abstract: A device includes a semiconductor chip, and a semiconductor chip package in which the semiconductor chip is packaged. The semiconductor chip has a first major surface opposite a second major surface, and a set of four edges extending between the first major surface and the second major surface. The semiconductor chip package includes at least first and second electrodes exposed to an exterior of the semiconductor chip package and positioned apart from the semiconductor chip. The at least first and second electrodes overlap only one edge of the semiconductor chip. The semiconductor chip package also includes a filler that is molded between the semiconductor chip and each of the at least first and second electrodes.Type: GrantFiled: February 27, 2019Date of Patent: December 28, 2021Assignee: Apple Inc.Inventors: Tongbi T. Jiang, Miaolei Yan
-
Publication number: 20210364273Abstract: A portable electronic device is operable in a particulate matter concentration mode where the portable electronic device uses a self-mixing interferometry sensor to emit a beam of coherent light from an optical resonant cavity, receive a reflection or backscatter of the beam into the optical resonant cavity, produce a self-mixing signal resulting from a reflection or backscatter of the beam of coherent light, and determine a particle velocity and/or particulate matter concentration using the self-mixing signal. The portable electronic device is also operable in an absolute distance mode where the portable electronic device determines whether or not an absolute distance determined using the self-mixing signal is outside or within a particulate sensing volume associated with the beam of coherent light. If not, the portable electronic device may determine a contamination and/or obstruction is present that may result in inaccurate particle velocity and/or particulate matter concentration determination.Type: ApplicationFiled: August 3, 2021Publication date: November 25, 2021Inventors: Mehmet Mutlu, Miaolei Yan
-
Patent number: 11141498Abstract: A portable communication device includes an apparatus for environmental sensing. The apparatus includes a housing, one or more environmental sensors and an optical source. The housing includes one or more ports for allowing air flow between the surrounding environment and a cavity of the housing. The environmental sensors are coupled to the housing and can sense an environmental agent included in the air flow. The optical source can illuminate the cavity of the housing to decompose unwanted organic compounds inside the port.Type: GrantFiled: January 25, 2019Date of Patent: October 12, 2021Assignee: Apple Inc.Inventors: Miaolei Yan, Michael K. Brown, Richard Yeh
-
Patent number: 11112233Abstract: Aspects of the subject technology relate to an apparatus for self-mixing particulate-matter sensing using a vertical-cavity surface-emitting laser (VCSEL) with extrinsic photodiodes. The apparatus includes a dual-emitting light source disposed on a first chip and to generate a first light beam and a second light beam. The first light beam illuminates a particulate matter (PM), and a light detector extrinsic to the first chip measures the second light beam and variations of the second light beam and generates a self-mixing signal. The variations of the second light beam are caused by a back-scattered light resulting from back-scattering of the first light beam from the PM. The light detector is coupled to the dual-emitting light source. The direction of the second light beam is opposite to the direction of the first light beam, and the second light beam is directed to a sensitive area of the light detector.Type: GrantFiled: September 12, 2019Date of Patent: September 7, 2021Assignee: Apple Inc.Inventors: Mehmet Mutlu, Michael K. Brown, Wesley S. Smith, Orit A. Shamir, Richard T. Chen, Mark T. Winkler, Miaolei Yan, Richard Yeh
-
Patent number: 11112235Abstract: A portable electronic device is operable in a particulate matter concentration mode where the portable electronic device uses a self-mixing interferometry sensor to emit a beam of coherent light from an optical resonant cavity, receive a reflection or backscatter of the beam into the optical resonant cavity, produce a self-mixing signal resulting from a reflection or backscatter of the beam of coherent light, and determine a particle velocity and/or particulate matter concentration using the self-mixing signal. The portable electronic device is also operable in an absolute distance mode where the portable electronic device determines whether or not an absolute distance determined using the self-mixing signal is outside or within a particulate sensing volume associated with the beam of coherent light. If not, the portable electronic device may determine a contamination and/or obstruction is present that may result in inaccurate particle velocity and/or particulate matter concentration determination.Type: GrantFiled: March 27, 2020Date of Patent: September 7, 2021Assignee: Apple Inc.Inventors: Mehmet Mutlu, Miaolei Yan
-
Publication number: 20210080245Abstract: Aspects of the subject technology relate to an apparatus for self-mixing particulate-matter sensing using a vertical-cavity surface-emitting laser (VCSEL) with extrinsic photodiodes. The apparatus includes a dual-emitting light source disposed on a first chip and to generate a first light beam and a second light beam. The first light beam illuminates a particulate matter (PM), and a light detector extrinsic to the first chip measures the second light beam and variations of the second light beam and generates a self-mixing signal. The variations of the second light beam are caused by a back-scattered light resulting from back-scattering of the first light beam from the PM. The light detector is coupled to the dual-emitting light source. The direction of the second light beam is opposite to the direction of the first light beam, and the second light beam is directed to a sensitive area of the light detector.Type: ApplicationFiled: September 12, 2019Publication date: March 18, 2021Inventors: Mehmet MUTLU, Michael K. BROWN, Wesley S. SMITH, Orit A. SHAMIR, Richard T. CHEN, Mark T. WINKLER, Miaolei YAN, Richard YEH
-
Patent number: 10928345Abstract: A portable communication device may include a gas sensor enclosed in an enclosure, a port to allow flow of air into and out of the enclosure, and a light source disposed on an internal surface of the enclosure. The light source is operable to facilitate generation of ozone gas within the enclosure. The enclosure may contain a heating element that allows baseline calibration of the gas sensor by thermally decomposing ozone gas molecules. The gas sensor includes a miniature gas sensor such as a metal-oxide (MOX) gas sensor.Type: GrantFiled: February 14, 2019Date of Patent: February 23, 2021Assignee: Apple Inc.Inventors: Michael K. Brown, Miaolei Yan, Roberto M. Ribeiro
-
Publication number: 20200319082Abstract: Various sensors, including particulate matter sensors, are described. One particulate matter sensor includes a self-mixing interferometry sensor and a set of one or more optical elements. The set of one or more optical elements is positioned to receive an optical emission of the self-mixing interferometry sensor, split the optical emission into multiple beams, and direct each beam of the multiple beams in a different direction. The self-mixing interferometry sensor is configured to generate particle speed information for particles passing through respective measurement regions of the multiple beams.Type: ApplicationFiled: March 27, 2020Publication date: October 8, 2020Inventors: Mehmet Mutlu, Miaolei Yan, Michael K. Brown, Richard Yeh
-
Publication number: 20200318945Abstract: A portable electronic device is operable in a particulate matter concentration mode where the portable electronic device uses a self-mixing interferometry sensor to emit a beam of coherent light from an optical resonant cavity, receive a reflection or backscatter of the beam into the optical resonant cavity, produce a self-mixing signal resulting from a reflection or backscatter of the beam of coherent light, and determine a particle velocity and/or particulate matter concentration using the self-mixing signal. The portable electronic device is also operable in an absolute distance mode where the portable electronic device determines whether or not an absolute distance determined using the self-mixing signal is outside or within a particulate sensing volume associated with the beam of coherent light. If not, the portable electronic device may determine a contamination and/or obstruction is present that may result in inaccurate particle velocity and/or particulate matter concentration determination.Type: ApplicationFiled: March 27, 2020Publication date: October 8, 2020Inventors: Mehmet Mutlu, Miaolei Yan
-
Publication number: 20200274020Abstract: A device includes a semiconductor chip, and a semiconductor chip package in which the semiconductor chip is packaged. The semiconductor chip has a first major surface opposite a second major surface, and a set of four edges extending between the first major surface and the second major surface. The semiconductor chip package includes at least first and second electrodes exposed to an exterior of the semiconductor chip package and positioned apart from the semiconductor chip. The at least first and second electrodes overlap only one edge of the semiconductor chip. The semiconductor chip package also includes a filler that is molded between the semiconductor chip and each of the at least first and second electrodes.Type: ApplicationFiled: February 27, 2019Publication date: August 27, 2020Inventors: Tongbi T. Jiang, Miaolei Yan
-
Publication number: 20200237947Abstract: A portable communication device includes an apparatus for environmental sensing. The apparatus includes a housing, one or more environmental sensors and an ozone source. The housing includes one or more ports for allowing air flow between the surrounding environment and a cavity of the housing. The environmental sensors are coupled to the housing and can sense an environmental agent included in the air flow. The ozone source can generate ozone gas within the cavity of the housing to decompose unwanted organic compounds inside the port.Type: ApplicationFiled: January 25, 2019Publication date: July 30, 2020Inventors: Michael K. BROWN, Ashwin Balasubramanian, Miaolei Yan
-
Publication number: 20200237940Abstract: A portable communication device includes an apparatus for environmental sensing. The apparatus includes a housing, one or more environmental sensors and an optical source. The housing includes one or more ports for allowing air flow between the surrounding environment and a cavity of the housing. The environmental sensors are coupled to the housing and can sense an environmental agent included in the air flow. The optical source can illuminate the cavity of the housing to decompose unwanted organic compounds inside the port.Type: ApplicationFiled: January 25, 2019Publication date: July 30, 2020Inventors: Miaolei YAN, Michael K. BROWN, Richard YEH
-
Publication number: 20200209133Abstract: A portable communication device includes one or more optical detectors to generate an analog signal in response to a change in an intra-cavity or an emitted optical power of a light source due to light backscattered from a particle and an application-specific integrated circuit (ASIC). The particle is illuminated via a light source. The ASIC includes an analog-to-digital converter (ADC) circuit, a digital delay circuit, a particle detector module and a processor. The ADC converts the analog signal to a digital signal. The digital delay circuit can store the digital signal for a predetermined or dynamically variable time interval. The particle detector module can analyze the digital signal and can generate an enable signal upon detecting a particle signature in the digital signal. The processor is coupled to the digital delay circuit and can start processing the digital signal in response to the enable signal.Type: ApplicationFiled: December 23, 2019Publication date: July 2, 2020Inventors: Miaolei YAN, Gregory B. Arndt, Mehmet Mutlu