Patents by Inventor Micah A. Forstein

Micah A. Forstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11986246
    Abstract: A method and system are provided to determine an optimal placement with respect to position and orientation for one or more bones in a workspace of a robot to improve robotic cutting and maximize the robot workspace during a robotic surgical procedure. The method is additionally useful to aid a user in positioning and orienting the bones in the operating room at the determined position and orientation.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: May 21, 2024
    Assignee: Think Surgical, Inc.
    Inventors: Jay Roldan, Min Yang Jung, Feimo Shen, Muhammad Afnan, Barry Voorhees, Micah Forstein, CJ Geering, Koteswara Ruvva, Joel Zuhars
  • Publication number: 20230255647
    Abstract: A method to guide in preparation of a bone relies on an instrument having a shaft with a working end and a stop member. The shaft is free to translate along an axis. Surgical planning data is registered to the bone to determine intra-operative coordinates of the desired axis and depth. The instrument holder is positioned by the bone so the stop member contacts the instrument holder to prevent translating beyond the desired depth. Alternatively, an arm is manipulated to align the instrument with the desired axis. The working end rests on the bone to define a linear separation to the desired depth. By proximally translating the instrument holder to contact the stop member and distally translating the instrument holder along the shaft, the stop member physically stops translating beyond the desired depth. A surgical system for performing the methods is provided; a reamer or impactor are also disclosed.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 17, 2023
    Applicant: THINK SURGICAL, INC.
    Inventors: Hosna Akhlaghpour, Ryan Sass, Kyle Kuznik, Micah Forstein, Gibson Elliot
  • Publication number: 20230248374
    Abstract: A system and method are provided for aligning a keel punch in a planned position and orientation relative to a subjects bone in a time efficient manner, which forms keel receiving features in the subjects bone with the accuracy and precision of a surgical robot. The system and method provided removes prior surgical constraints and allows a surgeon to reposition the patient prior to punching the keel receiving features without losing the alignment, and protects the robot from the forces required to punch the keel features manually, which would otherwise occur if the surgical robot were to fixedly hold the keel punching tool in place while punching the keel features. The provided method does not require a tool change, or require an end-effector to be fixedly attached to any of the components while aligning the keel punch alignment guide on the subjects bone.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 10, 2023
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Mark Dixon
  • Patent number: 11660102
    Abstract: A method to guide in preparation of a bone relies on an instrument having a shaft with a working end and a stop member. The shaft is free to translate along an axis. Surgical planning data is registered to the bone to determine intra-operative coordinates of the desired axis and depth. The instrument holder is positioned by the bone so the stop member contacts the instrument holder to prevent translating beyond the desired depth. Alternatively, an arm is manipulated to align the instrument with the desired axis. The working end rests on the bone to define a linear separation to the desired depth. By proximally translating the instrument holder to contact the stop member and distally translating the instrument holder along the shaft, the stop member physically stops translating beyond the desired depth. A surgical system for performing the methods is provided; a reamer or impactor are also disclosed.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: May 30, 2023
    Assignee: Think Surgical, Inc.
    Inventors: Hosna Akhlaghpour, Ryan Sass, Kyle Kuznik, Micah Forstein, Gibson Elliot
  • Publication number: 20230019609
    Abstract: A method to guide in preparation of a bone relies on an instrument having a shaft with a working end and a stop member. The shaft is free to translate along an axis. Surgical planning data is registered to the bone to determine intra-operative coordinates of the desired axis and depth. The instrument holder is positioned by the bone so the stop member contacts the instrument holder to prevent translating beyond the desired depth. Alternatively, an arm is manipulated to align the instrument with the desired axis. The working end rests on the bone to define a linear separation to the desired depth. By proximally translating the instrument holder to contact the stop member and distally translating the instrument holder along the shaft, the stop member physically stops translating beyond the desired depth. A surgical system for performing the methods is provided; a reamer or impactor are also disclosed.
    Type: Application
    Filed: September 20, 2022
    Publication date: January 19, 2023
    Applicant: THINK SURGICAL, INC.
    Inventors: Hosna Akhlaghpour, Ryan Sass, Kyle Kuznik, Micah Forstein, Gibson Elliot
  • Publication number: 20230000558
    Abstract: A system and method are provided for aligning a tool with a targeted axis in tissue to perform a medical procedure. medical plan is registered to the location of the tissue using a computer-assisted medical system, where the medical plan include a planned position for the targeted axis based on pre-procedure data. The tool is aligned with the planned position for the targeted axis using a computer- assisted medical system. The computer-assisted medical system includes a hand- held device having a handle and a working portion adjustable relative to the handle so as to orient the tool. A computing system is also provided comprising a tracking system and a control system for registering the medical plan to the location of the tissue, tracking the hand-held device relative to the tissue and the medical plan, and adjusting the working portion of the hand-held device relative to its handle.
    Type: Application
    Filed: December 1, 2020
    Publication date: January 5, 2023
    Inventors: Kyle Kuznik, Micah Forstein, Daniel Bonny
  • Patent number: 11457933
    Abstract: A method to guide in preparation of a bone relies on an instrument having a shaft with a working end and a stop member. The shaft is free to translate along an axis. Surgical planning data is registered to the bone to determine intra-operative coordinates of the desired axis and depth. The instrument holder is positioned by the bone so the stop member contacts the instrument holder to prevent translating beyond the desired depth. Alternatively, an arm is manipulated to align the instrument with the desired axis. The working end rests on the bone to define a linear separation to the desired depth. By proximally translating the instrument holder to contact the stop member and distally translating the instrument holder along the shaft, the stop member physically stops translating beyond the desired depth. A surgical system for performing the methods is provided; a reamer or impactor are also disclosed.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: October 4, 2022
    Assignee: THINK SURGICAL, INC.
    Inventors: Hosna Akhlaghpour, Ryan Sass, Kyle Kuznik, Micah Forstein, Gibson Elliot
  • Patent number: 11439411
    Abstract: A system for improved surgical cutting in the presence of surgical debris, the system comprising: a surgical cutter comprising a distal end and a proximal end, the distal end of the surgical cutter being configured to cut bone; a debris detection system mounted to the surgical cutter, the debris detection system comprising: a light source for emitting light; a receiver for receiving light emitted from the light source; and a microprocessor for determining a change in a characteristic of the light emitted by the light source and received by the receiver, and for determining the presence and/or amount of surgical debris present at a surgical site using a change in a characteristic of the light emitted by the light source and received by the receiver; and a controller for varying, based on the presence and/or amount of surgical debris present at the surgical site, at least one of (i) an amount of irrigation supplied to the surgical site, (ii) the feed rate of the surgical cutter, (iii) the direction of the surgi
    Type: Grant
    Filed: May 21, 2020
    Date of Patent: September 13, 2022
    Assignee: THINK Surgical, Inc.
    Inventors: Micah Forstein, Joel Zuhars
  • Publication number: 20220218423
    Abstract: A system and method are described herein for creating planar bone cuts on a bone to receive a total knee arthroplasty (TKA) femoral implant. The system includes a robotic surgical device, a computing system, and one or more contingent manual instruments. A surgical plan is generated having instructions for the robotic surgical device to create six or more planar bone cuts on the bone. The robotic surgical device executes the instructions, and in the event the robotic procedure is aborted before completing the six or more planar cuts, the one or more contingent manual instruments are used to create any remaining planar bone cuts. The one or more contingent manual instruments may include a plurality of uniquely arranged guide slots to assist a user in creating one or more remaining planar bone cuts.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Kyle Kuznik
  • Patent number: 11291427
    Abstract: A method of analyzing the quality of bone at one or more bone regions during an orthopedic surgical procedure includes an initial audio sample being recorded with an acoustic sensor, while a cutting instrument cuts a first region of a bone. The first audio sample is stored as a reference sample that represents a good degree of bone quality. A second audio sample is recorded with the acoustic sensor, while the cutting instrument cuts a second region of the bone. The second audio sample is compared to the reference sample to analyze the bone quality at the second region of the bone. A system for performing the method is also provided.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: April 5, 2022
    Assignee: Think Surgical, Inc.
    Inventors: Gibson Elliot, Micah Forstein
  • Patent number: 11291512
    Abstract: A system and method are described herein for creating planar bone cuts on a bone to receive a total knee arthroplasty (TKA) femoral implant. The system includes a robotic surgical device, a computing system, and one or more contingent manual instruments. A surgical plan is generated having instructions for the robotic surgical device to create six or more planar bone cuts on the bone. The robotic surgical device executes the instructions, and in the event the robotic procedure is aborted before completing the six or more planar cuts, the one or more contingent manual instruments are used to create any remaining planar bone cuts. The one or more contingent manual instruments may include a plurality of uniquely arranged guide slots to assist a user in creating one or more remaining planar bone cuts.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 5, 2022
    Assignee: Think Surgical, Inc.
    Inventors: Micah Forstein, Kyle Kuznik
  • Patent number: 11259872
    Abstract: A method and system are provided to intraoperatively adjust the dimensions of a pre-operatively planned implant cavity to improve implant fit in a bone. The method includes obtaining a preoperative image data set of the bone. A surgical plan is generated using the image data set and/or a three-dimensional (3-D) bone model of the patient's bone generated from the image data set. Intraoperatively, the patient's bone is exposed and registered to the surgical plan and a computer assisted surgical system. The computer assisted surgical system having a cutting tip and a force sensor for sensing actual forces exerted on the cutting tip as an initial cut is created on the bone at a first bone region. Based on the difference between the actual cutting force and the expected cutting force in the plan, the dimensions of the cavity are adjusted accordingly.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: March 1, 2022
    Assignee: Think Surgical Inc.
    Inventor: Micah Forstein
  • Publication number: 20220023511
    Abstract: A biocompatible surgical article is provided for cutting biological tissue or implantation in contact therewith. The surgical article has a composition of tungsten carbide—nickel with a percentage of additional metal carbides present. A typical composition in total weight percentages is WC 85 to 95%, Cr3C2, Mo2C, VC each alone or in combination being present from 0 to 2%, and Ni constituting the remainder. The composition is formed to have a mean grain size of between 200 and 800 nm with a particle dispersion index (Pdl) corresponding to (the square of the standard deviation)/(mean grain size) of between 0 and 0.6, and in some embodiments between 0.02 and 0.2.
    Type: Application
    Filed: December 11, 2019
    Publication date: January 27, 2022
    Applicants: THINK SURGICAL, INC., EXTRAMET PRODUCTS LLC
    Inventors: Timothy Pack, Christopher Douglas, Joel Zuhars, Micah Forstein
  • Publication number: 20210259781
    Abstract: A method and system is provided for registering the position and orientation (POSE) of a bone, where only data points that rest on the cortex of the bone are used to establish data points for determining the bone's POSE during a surgical procedure. The method collects the contact force and only collects a data point upon the removal at a specific threshold, which allows a digitizer to pass through the cartilage or soft tissue prior to the condition which defines when a data collection switch is closed. The collection of points is more consistent since the threshold value is normalized to hounds-field units of computed tomography (CT) data used for segmentation. The method utilizes a load cell to define a selection of a point based upon the release of what the point load applied is, as well as normalizing the activation threshold to the CT data of the bone.
    Type: Application
    Filed: February 23, 2021
    Publication date: August 26, 2021
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Joel Zuhars, Eustache Felenc
  • Publication number: 20210186614
    Abstract: A computerized system and method is provided for stabilizing a first bone relative to a second bone during robotic based total joint arthroplasty. A plurality of cut paths are determined, either pre-operatively or intra-operatively using three-dimensional (3-D) virtual bone models, relative to the first bone and/or second bone in order to modify the bone(s) to receive an implant in a desired position and orientation. At least one stability region is identified between the two bones, where one or more cut paths are adjusted to avoid the at least one stability region. The first bone is therefore stabilized against the second bone at the at least one stability region while the remaining cut paths are executed around the stability region. Finally, the at least one stability region is removed once the reaming cut paths are completed and an implant is placed on the modified bone(s).
    Type: Application
    Filed: May 22, 2019
    Publication date: June 24, 2021
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Steve Henderson
  • Publication number: 20210052327
    Abstract: A method for registering a bone is provided that includes the installation of two or more registration markers on an exposed portion of the bone as part of a first stage of a revision. An image data set of the bone is generated to create imaged registration markers. A surgical plan is generated for implanting one or more secondary implants in a second stage of the two-stage procedure based on the image data. The bone is registered to the surgical plan and a computer-assist device using the two or more registration markers by: digitizing a set of positions of the two or more registration markers to create digitized registration markers; and mapping the set of positions of the digitized registration markers with a corresponding set of positions of the imaged registration markers. A system for performing the method is provided. Implant revision is promoted through the use of the method.
    Type: Application
    Filed: February 12, 2019
    Publication date: February 25, 2021
    Applicant: Think Surgical, Inc.
    Inventors: Kyle Kuznik, Micah Forstein, Steve Whiseant
  • Publication number: 20200405394
    Abstract: A method and system are provided to determine an optimal placement with respect to position and orientation for one or more bones in a workspace of a robot to improve robotic cutting and maximize the robot workspace during a robotic surgical procedure. The method is additionally useful to aid a user in positioning and orienting the bones in the operating room at the determined position and orientation.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 31, 2020
    Applicant: THINK SURGICAL, INC.
    Inventors: Jay Roldan, Min Yang Jung, Feimo Shen, Muhammad Afnan, Barry Voorhees, Micah Forstein, CJ Geering, Koteswara Ruvva, Joel Zuhars
  • Publication number: 20200367980
    Abstract: A system and method are described herein for creating planar bone cuts on a bone to receive a total knee arthroplasty (TKA) femoral implant. The system includes a robotic surgical device, a computing system, and one or more contingent manual instruments. A surgical plan is generated having instructions for the robotic surgical device to create six or more planar bone cuts on the bone. The robotic surgical device executes the instructions, and in the event the robotic procedure is aborted before completing the six or more planar cuts, the one or more contingent manual instruments are used to create any remaining planar bone cuts. The one or more contingent manual instruments may include a plurality of uniquely arranged guide slots to assist a user in creating one or more remaining planar bone cuts.
    Type: Application
    Filed: May 15, 2020
    Publication date: November 26, 2020
    Applicant: THINK SURGICAL, INC.
    Inventors: Micah Forstein, Kyle Kuznik
  • Publication number: 20200367913
    Abstract: A system for improved surgical cutting in the presence of surgical debris, the system comprising: a surgical cutter comprising a distal end and a proximal end, the distal end of the surgical cutter being configured to cut bone; a debris detection system mounted to the surgical cutter, the debris detection system comprising: a light source for emitting light; a receiver for receiving light emitted from the light source; and a microprocessor for determining a change in a characteristic of the light emitted by the light source and received by the receiver, and for determining the presence and/or amount of surgical debris present at a surgical site using a change in a characteristic of the light emitted by the light source and received by the receiver; and a controller for varying, based on the presence and/or amount of surgical debris present at the surgical site, at least one of (i) an amount of irrigation supplied to the surgical site, (ii) the feed rate of the surgical cutter, (iii) the direction of the surgi
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Micah Forstein, Joel Zuhars
  • Publication number: 20200297440
    Abstract: A system and method are provided for improving the positioning of a target anatomy relative to a robot to perform a medical procedure. The system and method is especially advantageous for complex procedures that require a large operational workspace and/or several manipulator orientation changes to execute a surgical plan in its entirety such as total knee arthroplasty (TKA), as well as any of a wide variety of other surgical procedures, orthopedic or otherwise, including hip arthroplasty, ligament reconstruction, and shoulder arthroplasty. Dynamic and controlled repositioning of the target anatomy promotes robotic surgical system access in a way that any static positioning of the target anatomy cannot thereby speeding a surgical process and extending the spatial range of operation of the robot and tools carried thereon.
    Type: Application
    Filed: September 20, 2018
    Publication date: September 24, 2020
    Applicant: THINK SURGICAL, INC.
    Inventor: Micah Forstein