Patents by Inventor Micah Benson

Micah Benson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912987
    Abstract: This invention describes a novel CRISPR/Cas9 target identification platform permitting the discovery of novel genes and pathways involved in the ability of T cells and NK cells to react against and generate an anti-tumor response.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: February 27, 2024
    Assignee: KSQ Therapeutics, Inc.
    Inventor: Micah Benson
  • Publication number: 20230340411
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: December 13, 2022
    Publication date: October 26, 2023
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo, James Martin Kaberna, II
  • Publication number: 20230220380
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: December 13, 2022
    Publication date: July 13, 2023
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Publication number: 20230108584
    Abstract: Methods for activating and expanding TILs using unconventional cytokines are provided. These methods include techniques for activating and expanding TILs using streamlined approaches, including one-step approaches, approaches using agonists for stimulation, approaches more suitable for clinical manufacturing, and approaches without the requirement of feeder cells, are provided. Compositions of expanded populations of TILs are also provided, in addition to populations of expanded TILs enriched in central memory T cell phenotype.
    Type: Application
    Filed: February 26, 2021
    Publication date: April 6, 2023
    Applicant: KSQ Therapeutics, Inc,
    Inventors: Micah Benson, Noah Jacob Tubo, Nicholas John Colletti, Robert Andrew LaMothe, Gregory V. Kryukov, Michael R. Schlabach, Sean Philip Leary Arlauckas
  • Publication number: 20230088186
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: August 25, 2022
    Publication date: March 23, 2023
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Patent number: 11608500
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: March 21, 2023
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Publication number: 20220315921
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: June 9, 2022
    Publication date: October 6, 2022
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Patent number: 11459544
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: October 4, 2022
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo, James Martin Kaberna, II
  • Publication number: 20220267727
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: March 29, 2022
    Publication date: August 25, 2022
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo, James Martin Kaberna, II
  • Patent number: 11421228
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: August 23, 2022
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Publication number: 20220220442
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: March 29, 2022
    Publication date: July 14, 2022
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo, James Martin Kaberna, II
  • Publication number: 20220154178
    Abstract: This invention describes a novel CRISPR/Cas9 target identification platform permitting the discovery of novel genes and pathways involved in the ability of T cells and NK cells to react against and generate an anti-tumor response.
    Type: Application
    Filed: June 24, 2021
    Publication date: May 19, 2022
    Applicant: KSQ Therapeutics, Inc.
    Inventor: Micah Benson
  • Patent number: 11332713
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: May 17, 2022
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael Schlabach, Noah Tubo, James Martin Kaberna, II
  • Patent number: 11261428
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: March 1, 2022
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael Schlabach, Noah Tubo, James Martin Kaberna, II
  • Publication number: 20220041713
    Abstract: Methods and compounds for conferring site-specific or local immune privilege.
    Type: Application
    Filed: September 18, 2019
    Publication date: February 10, 2022
    Inventors: Joanne L. Viney, Nathan Higginson-Scott, Micah Benson, Alan Crane, Kevin Lewis Otipoby
  • Publication number: 20220002409
    Abstract: Methods and compounds for conferring site-specific or local immune privilege.
    Type: Application
    Filed: February 10, 2021
    Publication date: January 6, 2022
    Inventors: Joanne L. Viney, Nathan Higginson-Scott, Micah Benson, Alan Crane
  • Publication number: 20210388349
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 16, 2021
    Applicant: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason J. Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael R. Schlabach, Noah Jacob Tubo
  • Publication number: 20210317443
    Abstract: This invention describes a novel CRISPR/Cas9 target identification platform permitting the discovery of novel genes and pathways involved in the ability of T cells and NK cells to react against and generate an anti-tumor response.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Applicant: KSQ Therapeutics, Inc.
    Inventor: Micah Benson
  • Patent number: 11111493
    Abstract: The present disclosure provides methods and compositions related to the modification of immune effector cells to increase therapeutic efficacy. In some embodiments, immune effector cells modified to reduce expression of one or more endogenous target genes, or to reduce one or more functions of an endogenous protein to enhance effector functions of the immune cells are provided. In some embodiments, immune effector cells further modified by introduction of transgenes conferring antigen specificity, such as exogenous T cell receptors (TCRs) or chimeric antigen receptors (CARs) are provided. Methods of treating a cell proliferative disorder, such as a cancer, using the modified immune effector cells described herein are also provided.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: September 7, 2021
    Assignee: KSQ Therapeutics, Inc.
    Inventors: Micah Benson, Jason Merkin, Gregory V. Kryukov, Solomon Martin Shenker, Michael Schlabach, Noah Tubo
  • Patent number: 11078481
    Abstract: This invention describes a novel CRISPR/Cas9 target identification platform permitting the discovery of novel genes and pathways involved in the ability of T cells and NK cells to react against and generate an anti-tumor response.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: August 3, 2021
    Assignee: KSQ Therapeutics, Inc.
    Inventor: Micah Benson