Patents by Inventor Micah Richert

Micah Richert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180018775
    Abstract: Systems and methods for predictive/reconstructive visual object tracking are disclosed. The visual object tracking has advanced abilities to track objects in scenes, which can have a variety of applications as discussed in this disclosure. In some exemplary implementations, a visual system can comprise a plurality of associative memory units, wherein each associative memory unit has a plurality of layers. The associative memory units can be communicatively coupled to each other in a hierarchical structure, wherein data in associative memory units in higher levels of the hierarchical structure are more abstract than lower associative memory units. The associative memory units can communicate to one another supplying contextual data.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 18, 2018
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher, Patryk Laurent, Csaba Petre
  • Patent number: 9870617
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: January 16, 2018
    Assignee: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Publication number: 20170355081
    Abstract: Systems and methods for automatic detection of spills are disclosed. In some exemplary implementations, a robot can have a spill detector comprising at least one optical imaging device configured to capture at least one image of a scene containing a spill while the robot moves between locations. The robot can process the at least one image by segmentation. Once the spill has been identified, the robot can then generate an alert indicative at least in part of a recognition of the spill.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 14, 2017
    Inventors: Dimitry Fisher, Cody Griffin, Micah Richert, Filip Piekniewski, Eugene lzhikevich, Jayram Moorkanikara Nageswaran, John Black
  • Patent number: 9840003
    Abstract: Apparatus and methods for navigation of a robotic device configured to operate in an environment comprising objects and/or persons. Location of objects and/or persons may changed prior and/or during operation of the robot. In one embodiment, a bistatic sensor comprises a transmitter and a receiver. The receiver may be spatially displaced from the transmitter. The transmitter may project a pattern on a surface in the direction of robot movement. In one variant, the pattern comprises an encoded portion and an information portion. The information portion may be used to communicate information related to robot movement to one or more persons. The encoded portion may be used to determine presence of one or more object in the path of the robot. The receiver may sample a reflected pattern and compare it with the transmitted pattern. Based on a similarity measure breaching a threshold, indication of object present may be produced.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 12, 2017
    Assignee: Brain Corporation
    Inventors: Botond Szatmary, Micah Richert
  • Patent number: 9713982
    Abstract: Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: July 25, 2017
    Assignee: Brain Corporation
    Inventors: Marius Buibas, Micah Richert
  • Patent number: 9630317
    Abstract: Robotic devices may be operated by users remotely. A learning controller apparatus may detect remote transmissions comprising user control instructions. The learning apparatus may receive sensory input conveying information about robot's state and environment (context). The learning apparatus may monitor one or more wavelength (infrared light, radio channel) and detect transmissions from user remote control device to the robot during its operation by the user. The learning apparatus may be configured to develop associations between the detected user remote control instructions and actions of the robot for given context. When a given sensory context occurs, the learning controller may automatically provide control instructions to the robot that may be associated with the given context. The provision of control instructions to the robot by the learning controller may obviate the need for user remote control of the robot thereby enabling autonomous operation by the robot.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: April 25, 2017
    Assignee: Brain Corporation
    Inventors: Eugene M. Izhikevich, Patryk Laurent, Micah Richert, Csaba Petre
  • Publication number: 20170023661
    Abstract: Broadband signal transmissions may be used for object detection and/or ranging. Broadband transmissions may comprise a pseudo-random bit sequence or a bit sequence produced using, a random process. The sequence may be used to modulate transmissions of a given wave type. Various types of waves may be utilized, pressure, light, and radio waves. Waves reflected by objects within the sensing volume may be sampled. The received signal may be convolved with a time-reversed copy of the transmitted random sequence to produce a correlogram. The correlogram may be analyzed to determine range to objects. The analysis may comprise determination of one or more peaks/troughs in the correlogram. Range to an object may be determines based on a time lag of a respective peak.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 26, 2017
    Inventor: Micah Richert
  • Publication number: 20160378117
    Abstract: Apparatus and methods for navigation of a robotic device configured to operate in an environment comprising objects and/or persons. Location of objects and/or persons may change prior and/or during operation of the robot. In one embodiment, a bistatic sensor comprises a transmitter and a receiver. The receiver may be spatially displaced from the transmitter. The transmitter may project a pattern on a surface in the direction of robot movement. In one variant, the pattern comprises an encoded portion and an information portion. The information portion may be used to communicate information related to robot movement to one or more persons. The encoded portion may be used to determine presence of one or more object in the path of the robot. The receiver may sample a reflected pattern and compare it with the transmitted pattern. Based on a similarity measure breaching a threshold, indication of object present may be produced.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Botond Szatmary, Micah Richert
  • Publication number: 20160375592
    Abstract: Apparatus and methods for navigation of a robotic device configured to operate in an environment comprising objects and/or persons. Location of objects and/or persons may changed prior and/or during operation of the robot. In one embodiment, a bistatic sensor comprises a transmitter and a receiver. The receiver may be spatially displaced from the transmitter. The transmitter may project a pattern on a surface in the direction of robot movement. In one variant, the pattern comprises an encoded portion and an information portion. The information portion may be used to communicate information related to robot movement to one or more persons. The encoded portion may be used to determine presence of one or more object in the path of the robot. The receiver may sample a reflected pattern and compare it with the transmitted pattern. Based on a similarity measure breaching a threshold, indication of object present may be produced.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 29, 2016
    Inventors: Botond Szatmary, Micah Richert
  • Patent number: 9460385
    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: October 4, 2016
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Filip Piekniewski, Micah Richert, Eugene Izhikevich, Victor Hokkiu Chan, Jeffrey Alexander Levin
  • Patent number: 9436908
    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one approach, the plasticity mechanism of a connection may comprise a causal potentiation portion and an anti-causal portion. The anti-causal portion, corresponding to the input into a neuron occurring after the neuron response, may be configured based on the prior activity of the neuron. When the neuron is in low activity state, the connection, when active, may be potentiated by a base amount. When the neuron activity increases due to another input, the efficacy of the connection, if active, may be reduced proportionally to the neuron activity. Such functionality may enable the network to maintain strong, albeit inactive, connections available for use for extended intervals.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: September 6, 2016
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Filip Piekniewski, Micah Richert, Eugene Izhikevich, Victor Hokkiu Chan, Jeffrey Alexander Levin
  • Patent number: 9412064
    Abstract: Apparatus and methods for event based communication in a spiking neuron network. The network may comprise units communicating by spikes via synapses. The spikes may communicate a payload data. The data may comprise one or more bits. The payload may be stored in a buffer of a pre-synaptic unit and be configured to accessed by the post-synaptic unit. Spikes of different payload may cause different actions by the recipient unit. Sensory input spikes may cause postsynaptic response and trigger connection efficacy update. Teaching input spikes trigger the efficacy update without causing the post-synaptic response.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 9, 2016
    Assignee: QUALCOMM TECHNOLOGIES INC.
    Inventors: Botond Szatmary, Micah Richert, Oleg Sinyavskiy, Eugene Izhikevich
  • Patent number: 9373038
    Abstract: A data processing apparatus may utilize an artificial neuron network configured to reduce dimensionality of input data using a sparse transformation configured using receptive field structure of network units. Output of the network may be analyzed for temporally persistency that is characterized by similarity matrix. Elements of the matrix may be incremented when present activity unit activity at a preceding frame. The similarity matrix may be partitioned based on a distance measure for a given element of the matrix and its closest neighbors. Stability of learning of temporally proximal patterns may be greatly improved as the similarity matrix is learned independently of the partitioning operation. Partitioning of the similarity matrix using the methodology of the disclosure may be performed online, e.g., contemporaneously with the encoding and/or similarity matrix construction, thereby enabling learning of new features in the input data.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: June 21, 2016
    Assignee: Brain Corporation
    Inventors: Micah Richert, Filip Piekniewski
  • Publication number: 20160086050
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Publication number: 20160086051
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Publication number: 20160086052
    Abstract: Apparatus and methods for detecting and utilizing saliency in digital images. In one implementation, salient objects may be detected based on analysis of pixel characteristics. Least frequently occurring pixel values may be deemed as salient. Pixel values in an image may be compared to a reference. Color distance may be determined based on a difference between reference color and pixel color. Individual image channels may be scaled when determining saliency in a multi-channel image. Areas of high saliency may be analyzed to determine object position, shape, and/or color. Multiple saliency maps may be additively or multiplicative combined in order to improve detection performance (e.g., reduce number of false positives). Methodologies described herein may enable robust tracking of objects utilizing fewer determination resources. Efficient implementation of the methods described below may allow them to be used for example on board a robot (or autonomous vehicle) or a mobile determining platform.
    Type: Application
    Filed: March 3, 2015
    Publication date: March 24, 2016
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher
  • Patent number: 9275326
    Abstract: Apparatus and methods for activity based plasticity in a spiking neuron network adapted to process sensory input. In one embodiment, the plasticity mechanism may be configured for example based on activity of one or more neurons providing feed-forward stimulus and activity of one or more neurons providing inhibitory feedback. When an inhibitory neuron generates an output, inhibitory connections may be potentiated. When an inhibitory neuron receives inhibitory input, the inhibitory connection may be depressed. When the inhibitory input arrives subsequent to the neuron response, the inhibitory connection may be depressed. When input features are unevenly distributed in occurrence, the plasticity mechanism is capable of reducing response rate of neurons that develop receptive fields to more prevalent features. Such functionality may provide network output such that rarely occurring features are not drowned out by more widespread stimulus.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 1, 2016
    Assignee: Brain Corporation
    Inventors: Filip Piekniewski, Micah Richert, Dimitry Fisher, Eugene Izhikevich
  • Publication number: 20160014426
    Abstract: Frame sequences from multiple image sensors may be combined in order to form, for example, an interleaved frame sequence. Individual frames of the combined sequence may be configured a by combination (e.g., concatenation) of frames from one or more source sequences. The interleaved/concatenated frame sequence may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 14, 2016
    Inventor: Micah Richert
  • Patent number: 9218563
    Abstract: Apparatus and methods for salient feature detection by a spiking neuron network. The network may comprise feature-specific units capable of responding to different objects (red and green color). The plasticity mechanism of the network may be configured based on difference between two similarity measures related to activity of different unit types obtained during network training. One similarity measure may be based on activity of units of the same type (red). Another similarity measure may be based on activity of units of one type (red) and another type (green). Similarity measures may comprise a cross-correlogram and/or mutual information determined over an activity window. During network operation, the activity based plasticity mechanism may be used to potentiate connections between units of the same type (red-red). The plasticity mechanism may be used to depress connections between units of different types (red-green). The plasticity mechanism may effectuate detection of salient features in the input.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: December 22, 2015
    Assignee: Brain Corporation
    Inventors: Botond Szatmary, Micah Richert, Eugene Izhikevich, Jayram Moorkanikara Nageswaran, Filip Piekniewski, Sach Sokol, Csaba Petre
  • Publication number: 20150338204
    Abstract: Data streams from multiple image sensors may be combined in order to form, for example, an interleaved video stream, which can be used to determine distance to an object. The video stream may be encoded using a motion estimation encoder. Output of the video encoder may be processed (e.g., parsed) in order to extract motion information present in the encoded video. The motion information may be utilized in order to determine a depth of visual scene, such as by using binocular disparity between two or more images by an adaptive controller in order to detect one or more objects salient to a given task. In one variant, depth information is utilized during control and operation of mobile robotic devices.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 26, 2015
    Inventors: Micah Richert, Marius Buibas, Vadim Polonichko