Patents by Inventor Michèle Van Thournout

Michèle Van Thournout has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9051184
    Abstract: The invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M being Co and/or Mn, and 0?x?1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of: providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Fe(II), P(V), and Co(II) and/or Mn(II) as precursor components; heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: June 9, 2015
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Stéphane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Patent number: 8753532
    Abstract: The invention relates to a LiaNixCoyMny?M?zO2 composite oxide for use as a cathode material in a rechargeable battery, with a non-homogenous Ni/M? ratio in the particles, allowing excellent power and safety properties when used as positive electrode material in Li battery. More particularly, in the formula 0.9<a<1.1, 0.3?x?0.9, 0<y?0.4, 0<y??0.4, 0<z?0.35, e<0.02, 0?f?0.05 and 0.9<(x+y+y?+z+f)<1.1; M? consists of either one or more elements from the group Al, Mg, Ti, Cr, V, Fe, Mn and Ga; N consists of either one or more elements from the group F, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn. The powder has a particle size distribution defining a D10, D50 and D90; and the x and z parameters varying with the particles size of the powder, and is characterized in that either one or both of: x1?x2?0.005 and z2?z1?0.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: June 17, 2014
    Assignee: Umicore
    Inventors: Stephane Levasseur, Philippe Carlach, Randy De Palma, Michèle Van Thournout
  • Patent number: 8673170
    Abstract: The invention relates to a LiaNixCoyMzO2±eAf composite oxide for use as a cathode material in a rechargeable battery, with a non-homogenous Ni/Al ratio in the particles, allowing excellent power and safety properties when used as positive electrode material in Li battery. More particularly, in the formula 0.9<a<1.1, 0.3?x?0.9, 0?y?0.4, 0<z?0.35, e=0, 0?f?0.05 and 0.9<(x+y+z+f)<1.1; M consists of either one or more elements from the group Al, Mg and Ti; A consists of either one or more elements from the group S and C. The powder has a particle size distribution defining a D10, D50 and D90; and said x and z parameters varying with the particles size of said powder, and is characterized in that either one or both of: x1?x2?0.010 and z2?z1?0.010; x1 and z1 being the parameters corresponding to particles having a particle size D90; and x2 and z2 being the parameters corresponding to particles having a particle size D10.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: March 18, 2014
    Assignee: Umicore
    Inventors: Stephane Levasseur, Philippe Carlach, Randy De Palma, Michèle Van Thournout
  • Patent number: 8628694
    Abstract: The invention relates to active material for the negative electrode of secondary rechargeable lithium batteries, wherein the active material is based on doped or undoped carbon-bearing lithium titanium ramsdellite oxide with general formula Li2Ti3O7 or Li2.28Ti3.43O8. The active material comprises a carbon substituted ramsdellite phase having a general formula Li2?4cCc—Ti3O7, with 0.1<c<0.5, and more than 0.1 mol % of spinel phase having a general formula Li1+xTi2?xO4 with 0<x<0.33.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: January 14, 2014
    Assignees: Umicore, Centre National de la Recherche Scientifique, Universite Montpellier, SAFT Groupe S.A.
    Inventors: Michèle Van Thournout, Laure Monconduit, Claire Villevieille, Josette Olivier-Fourcade, Jean-Claude Jumas, Cécile Tessier
  • Patent number: 8486309
    Abstract: An active material for a lithium battery electrode comprises a phase having the formula Li2+v?4cCcTi3?wFexMyM?zO7??, in which M and M? are metal ions of groups of 2 to 15 having an ionic radius between 0.5 and 0.8 ? in an octahedral environment, v, w, x, y, z and ? being associated by the relationships: 2?=?v+4w?3x?ny?n?z, with n and n? being the respective formal degrees of oxidation of M and M?; ?0.5?v?0.5; y+z>0; x+y+z=w; and 0<w?0.3; and wherein at least part of the lithium is substituted by carbon according to the relationship 0<c(2+v)/4. The invention also includes a method for synthesizing the active material which comprises mixing and grinding the precursor compounds containing the metal components, carbon and oxygen; heating the mixture in an inert atmosphere at a temperature of 950 to 1050° C. in order to make a ceramic phase; and rapidly cooling the ceramic phase to produce the active material.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 16, 2013
    Assignees: Umicore, Centre National de la Recherche Scientifique, Saft Groupe S.A., Universite Montpellier 2
    Inventors: Stéphane Levasseur, Cécile Tessier, Josette Olivier-Fourcade, Laure Monconduit, Costana Ionica-Bousquet, Claire Villevieille, Michèle Van Thournout
  • Publication number: 20120104311
    Abstract: The invention relates to a LiaNixCoyMzO2±eAf composite oxide for use as a cathode material in a rechargeable battery, with a non-homogenous Ni/Al ratio in the particles, allowing excellent power and safety properties when used as positive electrode material in Li battery. More particularly, in the formula 0.9<a<1.1, 0.3?x?0.9, 0?y?0.4, 0<z?0.35, e=0, 0?f?0.05 and 0.9<(x+y+z+f)<1.1; M consists of either one or more elements from the group Al, Mg and Ti; A consists of either one or more elements from the group S and C. The powder has a particle size distribution defining a D10, D50 and D90; and said x and z parameters varying with the particles size of said powder, and is characterized in that either one or both of: x1?x2?0.010 and z2?z1?0.010; x1 and z1 being the parameters corresponding to particles having a particle size D90; and x2 and z2 being the parameters corresponding to particles having a particle size D10.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 3, 2012
    Inventors: Stephane Levasseur, Philippe Carlach, Randy De Palma, Michèle Van Thournout
  • Publication number: 20120097890
    Abstract: The invention relates to active material for the negative electrode of secondary rechargeable lithium batteries, wherein the active material is based on doped or undoped carbon-bearing lithium titanium ramsdellite oxide with general formula Li2Ti3O7 or Li2.28Ti3.43O8. The active material comprises a carbon substituted ramsdellite phase having a general formula Li2?4cCc—Ti3O7, with 0.1<c<0.5, and more than 0.1 mol % of spinel phase having a general formula Li1+xTi2?xO4 with 0<x<0.33.
    Type: Application
    Filed: February 10, 2010
    Publication date: April 26, 2012
    Applicants: UMICORE, SAFT GROUPE S.A., UNIVERSITE MONTPELLIER 2, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Michèle Van Thournout, Laure Monconduit, Claire villevielle, Josette Olivier-Fourcade, Jean-Claude Jumas, Cécile Tessier
  • Publication number: 20120085975
    Abstract: The invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M being Co and/or Mn, and 0?x?1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of: providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Fe(II), P(V), and Co(II) and/or Mn(II) as precursor components; heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 12, 2012
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UMICORE
    Inventors: Stephane LEVASSEUR, Michèle VAN THOURNOUT, Pierre GIBOT, Christian MASQUELIER
  • Publication number: 20120074351
    Abstract: The invention relates to a LiaNixCoyMny?M?zO2 composite oxide for use as a cathode material in a rechargeable battery, with a non-homogenous Ni/M? ratio in the particles, allowing excellent power and safety properties when used as positive electrode material in Li battery. More particularly, in the formula 0.9<a<1.1, 0.3?x?0.9, 0<y?0.4, 0<y??0.4, 0<z?0.35, e<0.02, 0?f?0.05 and 0.9<(x+y+y?+z+f)<1.1; M? consists of either one or more elements from the group Al, Mg, Ti, Cr, V, Fe, Mn and Ga; N consists of either one or more elements from the group F, Cl, S, Zr, Ba, Y, Ca, B, Sn, Sb, Na and Zn. The powder has a particle size distribution defining a D10, D50 and D90; and the x and z parameters varying with the particles size of the powder, and is characterized in that either one or both of: x1?x2?0.005 and z2?z1?0.
    Type: Application
    Filed: August 15, 2011
    Publication date: March 29, 2012
    Inventors: Stephane LEVASSEUR, Philippe CARLACH, Randy DE PALMA, Michèle VAN THOURNOUT
  • Patent number: 8105508
    Abstract: The present invention relates to crystalline nanometric olivine-type LiFe1-xMnxPO4 powder with 0<x<1, with small particle size and narrow particle size distribution. The fine particle size is believed to account for excellent high-drain properties, while minimizing the need for conductive additives. The narrow distribution facilitates the electrode manufacturing process and ensures a homogeneous current distribution within the battery.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 31, 2012
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Stéphane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Patent number: 8066916
    Abstract: The present invention relates to lithium secondary batteries and more specifically to positive electrode materials operating at potentials greater than 2.8 V vs. Li+/Li in non-aqueous electrochemical cells. In particular, the invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M is Co and/or Mn, and 0<x<1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of:—providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Fe(II), P(V), and Co(II) and/or Mn(II) as precursor components;—heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: November 29, 2011
    Assignees: Umicore, Centre National de la Recherche Scientifique
    Inventors: Stephane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Publication number: 20110042628
    Abstract: The present invention relates to lithium cells, accumulators and batteries, and more particularly an active material for the negative electrode of rechargeable batteries. It concerns more particularly a material comprising a phase having a general formula Li2+v?4cCcTi3-wFexMyM?zO7?, in which M and M? are metal ions of groups of 2 to 15 having an ionic radius between 0.5 and 0.8 ? in an octahedral oxygen environment, v, w, x, y, z and ? being associated by the relationships: 2?=?v+4w?3x-ny-n?z, with n and n? the respective formal degrees of oxidation of M and M?; ?0.5?v?+0.5; y+z>0; x+y+z=w; and 0<w?0.3; characterized in that at least part of the lithium is substituted by carbon according to the relationship 0<c?(2+v)/4. The material has improved mass and volume capacities that may reach 190 Ah/kg, while preserving the previously acquired advantages, notably: a small loss of capacity at the first cycle, of 2 to 10 Ah/kg; excellent cyclability; low polarization of 30 to 70 mV in C/15 régime.
    Type: Application
    Filed: November 19, 2008
    Publication date: February 24, 2011
    Inventors: Stéphane Levasseur, Cécile Tessier, Josette Olivier-Fourcade, Laure Monconduit, Costana Ionica-Bousquet, Claire Villevieille, Michèle Van Thournout
  • Publication number: 20100327222
    Abstract: The present invention relates to lithium secondary batteries and more specifically to positive electrode materials operating at potentials greater than 2.8 V vs. Li+/Li in non-aqueous electrochemical cells. In particular, the invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M is Co and/or Mn, and 0<x<1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of: providing a water-based mixture having at a pH between 6 and 10, containing a dipolar) aprotic additive, and Li(I), Fe(II), P(V), and Co(II) and/or Mn(II) as precursor components; heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 30, 2010
    Applicants: UMICORE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Stephane LEVASSEUR, Michèle VAN THOURNOUT, Pierre GIBOT, Christian MASQUELIER
  • Publication number: 20100084615
    Abstract: The present invention relates to lithium secondary batteries and more specifically to positive electrode materials operating at potentials greater than 2.8 V vs. Li+/Li in non-aqueous electrochemical cells. In particular, the invention relates to crystalline nanometric olivine-type LiFe1-xMxPO4 powder with M is Co and/or Mn, and 0<x<1, with small particle size and narrow particle size distribution. A direct precipitation process is described, comprising the steps of:—providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Fe(II), PV, and Co(II) and/or Mn(II) as precursor components;—heating said water-based mixture to a temperature less than or equal to its boiling point at atmospheric pressure, thereby precipitating crystalline LiFe1-xMxPO4 powder. An extremely fine particle size is obtained of about 80 nm for Mn and 275 nm for Co, both with a narrow distribution.
    Type: Application
    Filed: November 19, 2007
    Publication date: April 8, 2010
    Inventors: Stephane Levasseur, Michèle Van Thournout, Pierre Gibot, Christian Masquelier
  • Publication number: 20090197174
    Abstract: The invention describes a method for making nano-sized crystalline LiMnPO4 powder with controlled morphology by direct precipitation at low temperature. It also describes a method for making a carbon coated LiMnPO4 composite powder with enhanced electrochemical performances. The manufacturing process comprises the steps of:—providing a water-based mixture having at a pH between 6 and 10, containing a dipolar aprotic additive, and Li(I), Mn(II) and P(v) as precursor components;—heating said water-based mixture to a temperature between 60° C. and its boiling point, thereby precipitating crystalline LiMnPO4 powder. The above process yields a powder for use as cathode material in Li batteries with high reversible capacity and good rate properties.
    Type: Application
    Filed: November 19, 2007
    Publication date: August 6, 2009
    Applicants: UMICORE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Stephane Levassbur, Michele Van Thournout