Patents by Inventor Michael A. Dorsett

Michael A. Dorsett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020188754
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fibre Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: December 12, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020184529
    Abstract: A method, system, and computer-readable medium for using virtual identifiers to route communications through a network to destinations in an appropriate manner is described. The virtual identifiers can each be assigned to one or more paths through a network to a destination, such as by a network manager for the network. An appropriate virtual identifier for routing a data communication can also be identified in various ways, such as by registering the data communication with a network manager for the network and receiving an appropriate virtual identifier in response. A virtual identifier identified for a data communication may also be assigned to a path to one or more destinations that are selected as being appropriate in various ways, including selecting destinations that do not include a destination specified by a source of the communication.
    Type: Application
    Filed: April 19, 2002
    Publication date: December 5, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020181395
    Abstract: Techniques for communicating data through a network so as to satisfy various Quality Of Service (“QOS”) levels are described. The QOS levels may be selected based on a determined type of the data or the data communication, such as by a network manager after the data communication is registered, and QOS communication parameters are selected for the data communication to ensure that the QOS levels are achieved. Other techniques may also be used to ensure that a selected QOS level is achieved, including selecting an appropriate path through the network, controlling other data communications that use some or all of the selected path, and/or enabling preemption of such other data communications. QOS levels that are actually achieved may also be monitored, and the QOS communication parameters and/or path for a data communication may be dynamically modified based on differences between actual achieved QOS levels and desired QOS levels.
    Type: Application
    Filed: April 19, 2002
    Publication date: December 5, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020167902
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fiber Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: November 14, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159468
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fiber Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159437
    Abstract: A method and system for managing an interconnect fabric that connects nodes. A network manager manages an interconnect fabric or network of routing devices (e.g., interconnect fabric modules, switches, or routers) to allow source nodes to transmit data to destination nodes. The network manager receives registration requests from source nodes to send data to destination nodes, configures the routing devices of the network to establish a path from each source node to its destination node, and provides a virtual address to each source node. The virtual address identifies a path from the source node to the destination node. The source node sends the data to its destination node by providing the data along with the virtual address to a routing device of the network. Upon receiving the data and the virtual address, a source-side port of each routing device in the path uses the virtual address to identify a destination-side port through which the data and the virtual address are to be transmitted.
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159389
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fiber Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159458
    Abstract: A method and system for managing an interconnect fabric that connects nodes. A network manager manages an interconnect fabric or network of routing devices (e.g., interconnect fabric modules, switches, or routers) to allow source nodes to transmit data to destination nodes. The network manager receives registration requests from source nodes to send data to destination nodes, configures the routing devices of the network to establish a path from each source node to its destination node, and provides a virtual address to each source node. The virtual address identifies a path from the source node to the destination node. The source node sends the data to its destination node by providing the data along with the virtual address to a routing device of the network. Upon receiving the data and the virtual address, a source-side port of each routing device in the path uses the virtual address to identify a destination-side port through which the data and the virtual address are to be transmitted.
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020161923
    Abstract: A method and system for managing an interconnect fabric that connects nodes. A network manager manages an interconnect fabric or network of routing devices (e.g., interconnect fabric modules, switches, or routers) to allow source nodes to transmit data to destination nodes. The network manager receives registration requests from source nodes to send data to destination nodes, configures the routing devices of the network to establish a path from each source node to its destination node, and provides a virtual address to each source node. The virtual address identifies a path from the source node to the destination node. The source node sends the data to its destination node by providing the data along with the virtual address to a routing device of the network. Upon receiving the data and the virtual address, a source-side port of each routing device in the path uses the virtual address to identify a destination-side port through which the data and the virtual address are to be transmitted.
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159453
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fibre Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159456
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fiber Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020161887
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fibre Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159446
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fibre Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159452
    Abstract: An interconnect fabric module (“IFM”) with high-speed switching capabilities. An interconnect fabric module can be dynamically configured to interconnect its communications ports so that data can be transmitted through the interconnected ports. Multiple interconnect fabric modules can be connected to form an interconnect fabric through which nodes (e.g., computer systems) can be interconnected. In one embodiment, data is transmitted through the interconnect fabric as frames such as those defined by the Fibre Channel and InfiniBand standards. The interconnect fabric module allows the creation of an interconnect fabric that is especially well suited for interconnecting devices utilizing multiple information types such as might be required by the devices of an enterprise data network (“EDN”).
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett
  • Publication number: 20020159451
    Abstract: A method and system for managing an interconnect fabric that connects nodes. A network manager manages an interconnect fabric or network of routing devices (e.g., interconnect fabric modules, switches, or routers) to allow source nodes to transmit data to destination nodes. The network manager receives registration requests from source nodes to send data to destination nodes, configures the routing devices of the network to establish a path from each source node to its destination node, and provides a virtual address to each source node. The virtual address identifies a path from the source node to the destination node. The source node sends the data to its destination node by providing the data along with the virtual address to a routing device of the network. Upon receiving the data and the virtual address, a source-side port of each routing device in the path uses the virtual address to identify a destination-side port through which the data and the virtual address are to be transmitted.
    Type: Application
    Filed: October 26, 2001
    Publication date: October 31, 2002
    Inventors: Michael S. Foster, Michael A. Dorsett