Patents by Inventor Michael A. Gribelyuk

Michael A. Gribelyuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240032437
    Abstract: The present disclosure generally relates to spin-orbit torque (SOT) devices comprising a bismuth antimony (BiSb) layer. The SOT devices further comprises a nonmagnetic buffer layer, a nonmagnetic interlayer, a ferromagnetic layer, and a nonmagnetic barrier layer. One or more of the barrier layer, interlayer, and buffer layer comprise a polycrystalline non-Heusler alloy material, or a Heusler alloy and a material selected from the group consisting of: Cu, Ag, Ge, Mn, Ni, Co, Mo, W, Sn, B, and In. The Heusler alloy is a full Heusler alloy comprising X2YZ or a half Heusler alloy comprising XYZ, where X is one of: Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au, Y is one of: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Nb, Mo, Hf, and W, and Z is one of: B, Al, Si, Ga, Ge, As, In, Sn, Sb, and Bi.
    Type: Application
    Filed: May 15, 2023
    Publication date: January 25, 2024
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Xiaoyong LIU, Susumu OKAMURA, Michael A. GRIBELYUK, Xiaoyu XU, Randy G. SIMMONS, Kuok San HO, Hisashi TAKANO
  • Patent number: 11875827
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) devices. The SOT devices each comprise a non-magnetic layer, a free layer disposed in contact with the non-magnetic layer, and a bismuth antimony (BiSb) layer disposed over the free layer. The non-magnetic layer has a thickness of about 0.5 nm to about 2 nm. The BiSb layer has a thickness of about 5 nm to about 10 nm. The BiSb layer and the free layer have collective thickness between about 5 nm to about 20 nm. By reducing the thickness of the non-magnetic layer and BiSb layer, a read gap of each SOT device is reduced while enabling large inverse spin Hall angles and high signal-to-noise ratios.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: January 16, 2024
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Brian R. York, Xiaoyong Liu, Son T. Le, Cherngye Hwang, Michael A. Gribelyuk, Xiaoyu Xu, Kuok San Ho, Hisashi Takano, Julian Sasaki, Huy H. Ho, Khang H. D. Nguyen, Nam Hai Pham
  • Publication number: 20240006109
    Abstract: The present disclosure generally relates to spin-orbit torque (SOT) device comprising a first bismuth antimony (BiSb) layer having a (001) orientation. The SOT device comprises a first BiSb layer having a (001) orientation and a second BiSb layer having a (012) orientation. The first BiSb layer having a (001) orientation is formed by depositing an amorphous material selected from the group consisting of: B, Al, Si, SiN, Mg, Ti, Sc, V, Cr, Mn, Y, Zr, Nb, AlN, C, Ge, and combinations thereof, on a substrate, exposing the amorphous material to form an amorphous oxide surface on the amorphous material, and depositing the first BiSb layer on the amorphous oxide surface. By utilizing a first BiSb layer having a (001) orientation and a second BiSb having a (012) orientation, the signal through the SOT device is balanced and optimized to match through both the first and second BiSb layers.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Xiaoyong LIU, Michael A. GRIBELYUK, Xiaoyu XU, Randy G. SIMMONS, Kuok San HO, Hisashi TAKANO
  • Publication number: 20240005973
    Abstract: The present disclosure generally relates to spin-orbit torque (SOT) devices comprising a bismuth antimony (BiSb) layer. The SOT devices further comprise one or more GexNiFe layers, where at least one GexNiFe layer is disposed in contact with the BiSb layer. The GexNiFe layer has a thickness less than or equal to about 15 ? when used as an interlayer on top of the BiSb layer or less than or equal to 40 ? when used as a buffer layer underneath the BiSb. When the BiSb layer is doped with a dopant comprising a gas, a metal, a non-metal, or a ceramic material, the GexNiFe layer promotes the BiSb layer to have a (012) orientation. When the BiSb layer is undoped, the GexNiFe layer promotes the BiSb layer to have a (001) orientation. Utilizing the GexNiFe layer allows the crystal orientation of the BiSb layer to be selected.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Xiaoyong LIU, Michael A. GRIBELYUK, Xiaoyu XU, Susumu OKAMURA, Kuok San HO, Hisashi TAKANO, Randy G. SIMMONS
  • Publication number: 20230386721
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a buffer layer, a bismuth antimony (BiSb) layer having a (012) orientation disposed on the buffer layer, and an interlayer disposed on the BiSb layer. The buffer layer and the interlayer may each independently be a single layer of material or a multilayer of material. The buffer layer and the interlayer each comprise at least one of a covalently bonded amorphous material, a tetragonal (001) material, a tetragonal (110) material, a body-centered cubic (bcc) (100) material, a face-centered cubic (fcc) (100) material, a textured bcc (100) material, a textured fcc (100) material, a textured (100) material, or an amorphous metallic material. The buffer layer and the interlayer inhibit antimony (Sb) migration within the BiSb layer and enhance uniformity of the BiSb layer while further promoting the (012) orientation of the BiSb layer.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Susumu OKAMURA, Michael A. GRIBELYUK, Xiaoyong LIU, Kuok San HO, Hisashi TAKANO
  • Publication number: 20230306993
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) devices. The SOT devices each comprise a non-magnetic layer, a free layer disposed in contact with the non-magnetic layer, and a bismuth antimony (BiSb) layer disposed over the free layer. The non-magnetic layer has a thickness of about 0.5 nm to about 2 nm. The BiSb layer has a thickness of about 5 nm to about 10 nm. The BiSb layer and the free layer have collective thickness between about 5 nm to about 20 nm. By reducing the thickness of the non-magnetic layer and BiSb layer, a read gap of each SOT device is reduced while enabling large inverse spin Hall angles and high signal-to-noise ratios.
    Type: Application
    Filed: March 25, 2022
    Publication date: September 28, 2023
    Inventors: Quang LE, Brian R. YORK, Xiaoyong LIU, Son T. LE, Cherngye HWANG, Michael A. GRIBELYUK, Xiaoyu XU, Kuok San HO, Hisashi TAKANO, Julian SASAKI, Huy H. HO, Khang H. D. NGUYEN, Nam Hai PHAM
  • Patent number: 11763973
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a buffer layer, a bismuth antimony (BiSb) layer having a (012) orientation disposed on the buffer layer, and an interlayer disposed on the BiSb layer. The buffer layer and the interlayer may each independently be a single layer of material or a multilayer of material. The buffer layer and the interlayer each comprise at least one of a covalently bonded amorphous material, a tetragonal (001) material, a tetragonal (110) material, a body-centered cubic (bcc) (100) material, a face-centered cubic (fcc) (100) material, a textured bcc (100) material, a textured fcc (100) material, a textured (100) material, or an amorphous metallic material. The buffer layer and the interlayer inhibit antimony (Sb) migration within the BiSb layer and enhance uniformity of the BiSb layer while further promoting the (012) orientation of the BiSb layer.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: September 19, 2023
    Assignee: Western Digital Technologies, Inc.
    Inventors: Quang Le, Brian R. York, Cherngye Hwang, Susumu Okamura, Michael Gribelyuk, Xiaoyong Liu, Kuok San Ho, Hisashi Takano
  • Publication number: 20230197132
    Abstract: The present disclosure generally relates to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a doped bismuth antimony (BiSbE) layer having a (012) orientation. The devices may include magnetic write heads, read heads, or MRAM devices. The dopant in the BiSbE layer enhances the (012) orientation. The BiSbE layer may be formed on a texturing layer to ensure the (012) orientation, and a migration barrier may be formed over the BiSbE layer to ensure the antimony does not migrate through the structure and contaminate other layers. A buffer layer and interlayer may also be present. The buffer layer and the interlayer may each independently be a single layer of material or a multilayer of material. The buffer layer and the interlayer inhibit antimony (Sb) migration within the doped BiSbE layer and enhance uniformity of the doped BiSbE layer while further promoting the (012) orientation of the doped BiSbE layer.
    Type: Application
    Filed: June 30, 2022
    Publication date: June 22, 2023
    Applicant: Western Digital Technologies, Inc.
    Inventors: Quang LE, Cherngye HWANG, Brian R. YORK, Randy G. SIMMONS, Xiaoyong LIU, Kuok San HO, Hisashi TAKANO, Michael A. GRIBELYUK, Xiaoyu XU
  • Publication number: 20230047223
    Abstract: The present disclosure generally relate to spin-orbit torque (SOT) magnetic tunnel junction (MTJ) devices comprising a buffer layer, a bismuth antimony (BiSb) layer having a (012) orientation disposed on the buffer layer, and an interlayer disposed on the BiSb layer. The buffer layer and the interlayer may each independently be a single layer of material or a multilayer of material. The buffer layer and the interlayer each comprise at least one of a covalently bonded amorphous material, a tetragonal (001) material, a tetragonal (110) material, a body-centered cubic (bcc) (100) material, a face-centered cubic (fcc) (100) material, a textured bcc (100) material, a textured fcc (100) material, a textured (100) material, or an amorphous metallic material. The buffer layer and the interlayer inhibit antimony (Sb) migration within the BiSb layer and enhance uniformity of the BiSb layer while further promoting the (012) orientation of the BiSb layer.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Quang LE, Brian R. YORK, Cherngye HWANG, Susumu OKAMURA, Michael GRIBELYUK, Xiaoyong LIU, Kuok San HO, Hisashi TAKANO
  • Patent number: 11495741
    Abstract: A SOT device includes a bismuth antimony dopant element (BiSbE) alloy layer over a substrate. The BiSbE alloy layer is used as a topological insulator. The BiSbE alloy layer includes bismuth, antimony, AND a dopant element. The dopant element is a non-metallic dopant element, a metallic dopant element, and combinations thereof. Examples of metallic dopant elements include Ni, Co, Fe, CoFe, NiFe, NiCo, NiCu, CoCu, NiAg, CuAg, Cu, Al, Zn, Ag, Ga, In, or combinations thereof. Examples of non-metallic dopant elements include Si, P, Ge, or combinations thereof. The BiSbE alloy layer can include a plurality of BiSb lamellae layers and one or more dopant element lamellae layers. The BiSbE alloy layer has a (012) orientation.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Brian R. York, Cherngye Hwang, Alan Spool, Michael Gribelyuk, Quang Le
  • Publication number: 20210408370
    Abstract: A SOT device includes a bismuth antimony dopant element (BiSbE) alloy layer over a substrate. The BiSbE alloy layer is used as a topological insulator. The BiSbE alloy layer includes bismuth, antimony, AND a dopant element. The dopant element is a non-metallic dopant element, a metallic dopant element, and combinations thereof. Examples of metallic dopant elements include Ni, Co, Fe, CoFe, NiFe, NiCo, NiCu, CoCu, NiAg, CuAg, Cu, Al, Zn, Ag, Ga, In, or combinations thereof. Examples of non-metallic dopant elements include Si, P, Ge, or combinations thereof. The BiSbE alloy layer can include a plurality of BiSb lamellae layers and one or more dopant element lamellae layers. The BiSbE alloy layer has a (012) orientation.
    Type: Application
    Filed: June 30, 2020
    Publication date: December 30, 2021
    Inventors: Brian R. YORK, Cherngye HWANG, Alan SPOOL, Michael GRIBELYUK, Quang LE
  • Publication number: 20170271471
    Abstract: A method includes forming a first silicide on a substrate after patterning a gate and spacer onto the substrate. A film is deposited over the substrate. A portion of the dielectric film is removed to expose the first silicide. A portion of the first silicide is removed to form a punch through region. A liner is deposited in the punch through region. A metal layer is deposited on the liner. The substrate is annealed to form a second silicide on the substrate.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Nicolas L. Breil, Brett H. Engel, Michael A. Gribelyuk, Ahmet S. Ozcan
  • Publication number: 20170194454
    Abstract: A method includes forming a first silicide on a substrate after patterning a gate and spacer onto the substrate. A film is deposited over the substrate. A portion of the dielectric film is removed to expose the first silicide. A portion of the first silicide is removed to form a punch through region. A liner is deposited in the punch through region. A metal layer is deposited on the liner. The substrate is annealed to form a second silicide on the substrate.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 6, 2017
    Inventors: Nicolas L. Breil, Brett H. Engel, Michael A. Gribelyuk, Ahmet S. Ozcan
  • Patent number: 8383483
    Abstract: The present invention relates to complementary metal-oxide-semiconductor (CMOS) circuits that each contains at least a first and a second gate stacks. The first gate stack is located over a first device region (e.g., an n-FET device region) in a semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer, a metallic gate conductor, and a silicon-containing gate conductor. The second gate stack is located over a second device region (e.g., a p-FET device region) in the semiconductor substrate and comprises at least, from bottom to top, a gate dielectric layer and a silicon-containing gate conductor. The first and second gate stacks can be formed over the semiconductor substrate in an integrated manner by various methods of the present invention.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: John C. Arnold, Glenn A. Biery, Alessandro C. Callegari, Tze-Chiang Chen, Michael P. Chudzik, Bruce B. Doris, Michael A. Gribelyuk, Young-Hee Kim, Barry P. Linder, Vijay Narayanan, Joseph S. Newbury, Vamsi K. Paruchuri, Michelle L. Steen
  • Patent number: 8288237
    Abstract: A compound metal comprising TiC which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the TiC compound metal. Furthermore, the TiC metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 ? in a p-metal oxide semiconductor (pMOS) device.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Michael A. Gribelyuk, Dianne L. Lacey, Fenton R. Feeney, Katherine L. Saenger, Sufi Zafar
  • Patent number: 8153514
    Abstract: The present invention provides a gate stack structure that has high mobilities and low interfacial charges as well as semiconductor devices, i.e., metal oxide semiconductor field effect transistors (MOSFETs) that include the same. In the semiconductor devices, the gate stack structure of the present invention is located between the substrate and an overlaying gate conductor. The present invention also provides a method of fabricating the inventive gate stack structure in which a high temperature annealing process (on the order of about 800° C.) is employed. The high temperature anneal used in the present invention provides a gate stack structure that has an interface state density, as measured by charge pumping, of about 8×1010 charges/cm2 or less, a peak mobility of about 250 cm2V-s or greater and substantially no mobility degradation at about 6.0×1012 inversion charges/cm2 or greater.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Wanda Andreoni, Alessandro C. Callegari, Eduard A. Cartier, Alessandro Curioni, Christopher P. D'Emic, Evgeni Gousev, Michael A. Gribelyuk, Paul C. Jamison, Rajarao Jammy, Dianne L. Lacey, Fenton R. McFeely, Vijay Narayanan, Carlo A. Pignedoli, Joseph F. Shepard, Jr., Sufi Zafar
  • Patent number: 7776701
    Abstract: A compound metal comprising MOxNy which is a p-type metal having a workfunction of about 4.75 to about 5.3, preferably about 5, eV that is thermally stable on a gate stack comprising a high k dielectric and an interfacial layer is provided as well as a method of fabricating the MOxNy compound metal. Furthermore, the MOxNy metal compound of the present invention is a very efficient oxygen diffusion barrier at 1000° C. allowing very aggressive equivalent oxide thickness (EOT) and inversion layer thickness scaling below 14 ? in a p-metal oxide semiconductor (pMOS) device. In the above formula, M is a metal selected from Group IVB, VB, VIB or VIIB of the Periodic Table of Elements, x is from about 5 to about 40 atomic % and y is from about 5 to about 40 atomic %.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Alessandro C. Callegari, Michael A. Gribelyuk, Vijay Narayanan, Vamsi K. Paruchuri, Sufi Zafar
  • Publication number: 20100187643
    Abstract: A metal gate and high-k dielectric device includes a substrate, an interfacial layer on top of the substrate, a high-k dielectric layer on top of the interfacial layer, a metal film on top of the high-k dielectric layer, a cap layer on top of the metal film and a metal gate layer on top of the cap layer. The thickness of the metal film and the thickness of the cap layer are tuned such that a target concentration of a cap layer material is present at an interface of the metal film and the high-k dielectric layer.
    Type: Application
    Filed: January 26, 2009
    Publication date: July 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MICHAEL P. CHUDZIK, MICHAEL A. GRIBELYUK, RASHMI JHA, RENEE T. MO, NAIM MOUMEN, KEITH KWONG HON WONG
  • Patent number: 7754594
    Abstract: A metal gate and high-k dielectric device includes a substrate, an interfacial layer on top of the substrate, a high-k dielectric layer on top of the interfacial layer, a metal film on top of the high-k dielectric layer, a cap layer on top of the metal film and a metal gate layer on top of the cap layer. The thickness of the metal film and the thickness of the cap layer are tuned such that a target concentration of a cap layer material is present at an interface of the metal film and the high-k dielectric layer.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Michael P Chudzik, Michael A Gribelyuk, Rashmi Jha, Renee T Mo, Naim Moumen, Keith Kwong Hon Wong
  • Patent number: 7683418
    Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong Hon Wong