Patents by Inventor Michael A. King

Michael A. King has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190243047
    Abstract: A polarizer disposed between a transducer and a surface in which acoustic waves propagate can be used to filter out certain types of acoustic energy. For example, the polarizer can be used with a shear-polarized transducer to pass shear waves and filter out compressional waves that may interact with water, thereby improving water rejection. In some examples, the polarizer can include one or more layers of piezoelectric material with a poling direction different than (e.g., orthogonal to) the poling direction of the transducer. Energy of compressional waves may be extracted by one or more external electric circuits. In some examples, the polarizer can be a magneto-elastic polarizer. In some examples, the polarizer can be a mechanical polarizer.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 8, 2019
    Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, Marcus YIP
  • Publication number: 20190235656
    Abstract: This relates to system architectures, apparatus and methods for acoustic touch detection (touch sensing) and exemplary applications of the system architectures, apparatus and methods. In some examples, the acoustic touch sensing techniques described herein can be used on a glass surface of a display or touch screen. In some examples, an acoustic touch sensing system can be configured to be insensitive to contact on the device surface by water, and thus acoustic touch sensing can be used for touch sensing in devices that are likely to become wet or fully submerged in water.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 1, 2019
    Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, George Ho Yin MAK, Marcus YIP, Mohammad YEKE YAZDANDOOST
  • Publication number: 20190234477
    Abstract: A suspension limiter includes a diaphragm element configured to be placed in operable communication with a suspension such that a rate of increase in load per unit travel of compression of the suspension is reduced near a full travel of the suspension than would exist for the suspension if the diaphragm element were not present, the diaphragm element arranged to deform only elastically through the full travel of the suspension. Suspension arrangements and methods of loading suspension arrangements are also described.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 1, 2019
    Inventor: Michael King
  • Patent number: 10359884
    Abstract: Ground detection of a touch sensitive device is disclosed. The device can detect its grounded state so that poor grounding can be selectively compensated for in touch signals outputted by the device. The device can include one or more components to monitor certain conditions of the device. The device can analyze the monitored conditions to determine the grounding condition of the device. The device can apply a function to compensate its touch signal outputs if the device determines that it is poorly grounded. Conversely, the device can omit the function if the device determines that it is well grounded.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: July 23, 2019
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, David Amm, Michael Lammers, John T. Orchard, Brian Michael King, Omar S. Leung, Deniz Teoman
  • Patent number: 10325136
    Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 18, 2019
    Assignee: Apple Inc.
    Inventors: Mohammad Yeke Yazdandoost, Marduke Yousefpor, Brian Michael King, Ehsan Khajeh, Marcus Yip, Giovanni Gozzini, Aaron Tucker
  • Patent number: 10311572
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reducing latency in transmitting and presenting map user interfaces. In one aspect, a method includes receiving, from a client device, a request for presentation of an interactive map user interface that depicts (i) a region and (ii) data related to an account for sub-regions of the region. One or more servers render a map of the region. The server(s) generate an image file representing an image of the rendered map. A different visual characteristic is assigned to each different sub-region. The server(s) configure a user interface of the client device to present (i) the image with each of the different sub-regions being presented according to the different visual characteristics and (ii) account data related to a sub-region when the client device detects a user interaction with the sub-region.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 4, 2019
    Assignee: Google LLC
    Inventors: Nikhil Bakshi, Oliver Michael King, Zev Nettleton Youra
  • Patent number: 10289235
    Abstract: Touch and hover switching is disclosed. A touch and hover sensing device can switch between a touch mode and a hover mode. During a touch mode, the device can be switched to sense one or more objects touching the device. During a hover mode, the device can be switched to sense one or more objects hovering over the device. The device can include a panel having multiple sensors for sensing a touching object and/or a hovering object and a touch and hover control system for switching the device between the touch and hover modes. The device's touch and hover control system can include a touch sensing circuit for coupling to the sensors to measure a capacitance indicative of a touching object during the touch mode, a hover sensing circuit for coupling to the sensors to measure a capacitance indicative of a hovering object during the hover mode, and a switching mechanism for switching the sensors to couple to either the touch sensing circuit or the hover sensing circuit.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: May 14, 2019
    Assignee: Apple Inc.
    Inventors: Brian Michael King, Omar S. Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David Amm, Duncan Robert Kerr
  • Patent number: 10275638
    Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Marduke Yousefpor, Mohammad Yeke Yazdandoost, Brian Michael King, Aaron Tucker, Marcus Yip, Ehsan Khajeh
  • Patent number: 10275633
    Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventors: Marduke Yousefpor, Mohammad Yeke Yazdandoost, Brian Michael King
  • Patent number: 10268303
    Abstract: Improved capacitive touch and hover sensing with a sensor array is provided. An AC ground shield positioned behind the sensor array and stimulated with signals of the same waveform as the signals driving the sensor array may concentrate the electric field extending from the sensor array and enhance hover sensing capability. The hover position and/or height of an object that is nearby, but not directly above, a touch surface of the sensor array, e.g., in the border area at the end of a touch screen, may be determined using capacitive measurements of sensors near the end of the sensor array by fitting the measurements to a model. Other improvements relate to the joint operation of touch and hover sensing, such as determining when and how to perform touch sensing, hover sensing, both touch and hover sensing, or neither.
    Type: Grant
    Filed: March 28, 2016
    Date of Patent: April 23, 2019
    Assignee: Apple Inc.
    Inventors: Jeffrey Traer Bernstein, David T. Amm, Omar S. Leung, Christopher Tenzin Mullens, Brian Michael King, Brian Richards Land, Reese T. Cutler
  • Publication number: 20190095045
    Abstract: Acoustic transducers can be formed form piezoelectric materials including one or more curved (non-linear) segments. The piezoelectric material can be shear poled such that a poling direction of the piezoelectric material can follow the curvature of the piezoelectric material. The piezoelectric material can also have a unidirectional poling direction. In some examples, the piezoelectric material can be a closed ring with a circular or partially circular shape. A shear poling process for a piezoelectric material with curves can include shear poling segments of the piezoelectric material with one or more sets of poling electrodes. The poling electrodes of a respective one of the one or more sets of poling electrodes can be coupled to the same side of the piezoelectric material.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 28, 2019
    Inventors: Ehsan KHAJEH, Aaron Scott TUCKER, Brian Michael KING, Marcus YIP
  • Publication number: 20190048664
    Abstract: Apparatuses are disclosed for providing directional control of bore drilling equipment. In an embodiment, the apparatus includes a hydraulic pump having an input shaft for receiving an input torque from a drill pipe and being connected in use to a drilling head. In addition, the apparatus includes control arrangement for varying the rate of fluid flow through the pump. The control arrangement includes a closed loop oil-filled system including the hydraulic pump and a main valve. Oil from the pump is routed through the main valve before returning to a pump input. In addition, the control arrangement includes an orifice control system which is operable to control the position of the main valve in response to an input signal from a control processor.
    Type: Application
    Filed: January 13, 2016
    Publication date: February 14, 2019
    Applicant: SLIP CLUTCH SYSTEMS LTD
    Inventor: Michael King Russell
  • Patent number: 10198108
    Abstract: Detecting a signal from a touch and hover sensing device, in which the signal can be indicative of concurrent touch events and/or hover events, is disclosed. A touch event can indicate an object touching the device. A hover event can indicate an object hovering over the device. The touch and hover sensing device can ensure that a desired hover event is not masked by an incidental touch event, e.g., a hand holding the device, by compensating for the touch event in the detected signal that represents both events. Conversely, when both a hover event and a touch event are desired, the touch and hover sensing device can ensure that both events are detected by adjusting the device sensors and/or the detected signal. The touch and hover sensing device can also detect concurrent hover events by identifying multiple peaks in the detected signal, each peak corresponding to a position of a hovering object.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Brian Michael King, Omar S. Leung, Paul G. Puskarich, Jeffrey Traer Bernstein, Andrea Mucignat, Avi E. Cieplinski, Muhammad U. Choudry, Praveen R. Subramani, Marc J. Piche, David Amm, Duncan Robert Kerr
  • Patent number: 10198610
    Abstract: An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Marduke Yousefpor, Mohammad Yeke Yazdandoost, Brian Michael King, Marcus Yip, Ehsan Khajeh, Aaron Tucker
  • Patent number: 10176584
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reducing latency in transmitting and presenting map user interfaces. In one aspect, a method includes receiving, from a client device, a request for presentation of an interactive map user interface that depicts (i) a region and (ii) data related to an account for sub-regions of the region. One or more servers render a map of the region. The server(s) generate an image file representing an image of the rendered map. A different visual characteristic is assigned to each different sub-region. The server(s) configure a user interface of the client device to present (i) the image with each of the different sub-regions being presented according to the different visual characteristics and (ii) account data related to a sub-region when the client device detects a user interaction with the sub-region.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: January 8, 2019
    Assignee: Google LLC
    Inventors: Nikhil Bakshi, Oliver Michael King, Zev Nettleton Youra
  • Publication number: 20180341347
    Abstract: Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 29, 2018
    Inventors: Marduke YOUSEFPOR, Mohammad YEKE YAZDANDOOST, Aaron Scott TUCKER, Marcus YIP, Ehsan KHAJEH, Brian Michael KING, Giovanni GOZZINI
  • Publication number: 20180343264
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reducing latency in network communications and data presentation. In one aspect, a user session is initiated in which data related to an account is presented to the user. A user group to which the given user has been assigned is identified. A first dataset related to the account is selected based on the user group. A second dataset related to the account is selected based on types of data previously requested by various other users in the user group. A user interface for the account is updated to present at least a portion of the first dataset. Latency in updating the user interface is reduced when presenting additional portions of the first dataset or the second dataset by providing, to the client device, the second dataset prior to receiving a request for the second dataset.
    Type: Application
    Filed: August 2, 2018
    Publication date: November 29, 2018
    Inventors: Nikhil Bakshi, Oliver Michael King, Dooyum Jeremiah Malu, Tommaso Francesco Bersano Begey
  • Publication number: 20180341359
    Abstract: Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.
    Type: Application
    Filed: May 24, 2018
    Publication date: November 29, 2018
    Inventors: Ehsan KHAJEH, Brian Michael KING, Mohammad YEKE YAZDANDOOST, Marcus YIP, Aaron Scott TUCKER, Marduke YOUSEFPOR, Peter Jon KARDASSAKIS, Giovanni GOZZINI, Supratik DATTA, Asif HUSSAIN
  • Publication number: 20180284946
    Abstract: An input device outfitted with one or more ultrasonic transducers can determine the location of one or more objects in contact with the input device. For example, the input device can include one or more transducers disposed in a ring around the circumference of the input device or in an array of rings along the length of the input device. The ultrasonic transducers can be used to detect the position of the one or more touching objects in at least one dimension, for example. In some examples, the one or more ultrasonic transducers can produce directional ultrasonic waves.
    Type: Application
    Filed: March 16, 2018
    Publication date: October 4, 2018
    Inventors: Marduke Yousefpor, Aaron Scott Tucker, Brian Michael King, Ehsan Khajeh, Marcus Yip, Mohammad Yeke Yazdandoost, Wesley W. Zuber
  • Publication number: 20180284947
    Abstract: The present disclosure relates to one or more intermediate layers located on a surface of a cover material of an acoustic touch screen. In some examples, the one or more layers can include one or more intermediate layers. The one or more intermediate layers can include a first layer including a plurality of features and a second layer located between the first layer and the cover material. In a touch condition, the touch object can apply a force to the top surface of the acoustic touch sensor. The applied force can create one or more local bends causing the plurality of features to move closer to the cover material and causing one or more surface discontinuities in the cover material. The acoustic waves can undergo reflections (e.g., causing the signal to be attenuated) due to the discontinuities located in the path of the wave propagation.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Ehsan KHAJEH, Brian Michael KING, Marcus YIP, Aaron Scott TUCKER, Mohammad YEKE YAZDANDOOST, Marduke YOUSEFPOR, Giovanni GOZZINI