Patents by Inventor Michael A. Marcus

Michael A. Marcus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944768
    Abstract: A method of using a catheter assembly for inserting in a fluid filled space in a body includes providing a main body having a first end portion and a second end portion. The first end portion is positioned within the fluid filled space. The second end portion is adjusted to extend outwardly from the fluid filled space when the first end portion is positioned within the fluid filled space. A catheter tip is connected to the second end portion of the main body. The catheter tip includes a housing having a cavity defined therein and a rotating element positioned within the fluid filled space. The rotating element is rotated within the cavity of the housing to impart movement of the first end portion of the main body within the fluid filled space.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 2, 2024
    Assignee: Washington University
    Inventors: Eric Leuthardt, Guy Genin, Matthew Smyth, David Limbrick, Daniel Moran, Lihong Wang, Aaron McLaughlin, Manish Shah, Alexander Yang, Samuel Stone, Devon Haydon, Michael Winek, Richard Marcus
  • Publication number: 20240104664
    Abstract: In an embodiment, a method is provided. The method includes receiving claim edit information including a plurality of claim edits made to a plurality of claims at a first time interval, where the plurality of claim edits are made using a rule; receiving claim information representing the status of the plurality of claims at a second time interval; and determining a persistence value based on the plurality of claims at a second time interval and the plurality of claim edits made at a first time interval.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 28, 2024
    Inventors: Sheila Miller, Michael Bradigan, Jeffrey Wright, Michael Marcus, Andrew Laurer, Lourn Bun, Mona Schuessler
  • Patent number: 11917510
    Abstract: One or more Bluetooth® low energy (BLE) beacons in communication with a remote server that provides check in capabilities and payment capabilities may be installed at a location. The BLE beacons may connect with a user's mobile device when the user enters the location and allow the user to check in to the location and authorize payments to be made at the location. Once the user is checked in to the location, the user may be provided with additional functionality, benefits, offers, and applications related to the location and facilitated by the check in. Further, the user may be pre-checked in into a next location when the user is at a current location.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: February 27, 2024
    Assignee: PAYPAL, INC.
    Inventors: Kent Griffin, John Hastings Granbery, Hill Ferguson, David Marcus, Michael Charles Todasco
  • Patent number: 11645594
    Abstract: In an example, a method is performed by a computing system that is one of a group of computing systems involved in facilitating a manufacturing of an aircraft. The method comprises generating a plurality of manufacturing task work statements (MTWSs), each MTWS being associated with a task involved in the manufacturing and comprising smart contract data and computer code. The method also comprises receiving system state information indicating (i) a schedule according to which the aircraft is to be manufactured, (ii) resources available for use in executing the MTWSs, and (iii) one or more aircraft certification requirements with which the tasks involved in the manufacturing of the aircraft are to comply. The method also comprises executing the MTWSs based on the system state information and storing, in a blockchain-based distributed ledger accessible by the group of computing systems, an end state result of the execution of each MTWS.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: May 9, 2023
    Assignee: The Boeing Company
    Inventors: Stephen Acey Walls, Robert Leon Malone, Kristen Ann Bengtson, Michael Marcus Vander Wel, Sharon Filipowski Arroyo
  • Patent number: 11215444
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference database of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material, and an apparatus for performing the methods are also disclosed.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: January 4, 2022
    Assignee: Lumentrics, Inc.
    Inventors: Michael A. Marcus, Kyle J. Hadcock, Donald S. Gibson, Filipp V. Ignatovich
  • Publication number: 20210065085
    Abstract: In an example, a method is performed by a computing system that is one of a group of computing systems involved in facilitating a manufacturing of an aircraft. The method comprises generating a plurality of manufacturing task work statements (MTWSs), each MTWS being associated with a task involved in the manufacturing and comprising smart contract data and computer code. The method also comprises receiving system state information indicating (i) a schedule according to which the aircraft is to be manufactured, (ii) resources available for use in executing the MTWSs, and (iii) one or more aircraft certification requirements with which the tasks involved in the manufacturing of the aircraft are to comply. The method also comprises executing the MTWSs based on the system state information and storing, in a blockchain-based distributed ledger accessible by the group of computing systems, an end state result of the execution of each MTWS.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 4, 2021
    Inventors: Stephen Acey Walls, Robert Leon Malone, Kristen Ann Bengtson, Michael Marcus Vander Wel, Sharon Filipowski Arroyo
  • Publication number: 20200393240
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference database of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material, and an apparatus for performing the methods are also disclosed.
    Type: Application
    Filed: August 27, 2020
    Publication date: December 17, 2020
    Applicant: Lumetrics, Inc.
    Inventors: Michael A. Marcus, Kyle J. Hadcock, Donald S. Gibson, Filipp V. Ignatovich
  • Patent number: 10761021
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference database of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material, and an apparatus for performing the methods are also disclosed.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 1, 2020
    Assignee: Lumetrics, Inc.
    Inventors: Michael A. Marcus, Kyle J. Hadcock, Donald S. Gibson, Filipp V. Ignatovich
  • Publication number: 20190162660
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference database of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material, and an apparatus for performing the methods are also disclosed.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 30, 2019
    Applicant: Lumetrics, Inc.
    Inventors: Michael A. MARCUS, Kyle J. HADCOCK, Donald S. GIBSON, Filipp V. IGNATOVICH
  • Patent number: 10190977
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference data base of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material is also disclosed.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: January 29, 2019
    Assignee: LUMETRICS, INC.
    Inventors: Michael A. Marcus, Donald S. Gibson, Kyle J. Hadcock, Filipp V. Ignatovich
  • Publication number: 20180321145
    Abstract: A method of identifying the material and determining the physical thickness of each layer in a multilayer structure is disclosed. The method includes measuring the optical thickness of each of the layers of the multilayer object as a function of wavelength of a light source and calculating a normalized group index of refraction dispersion curve for each layer in the multilayer structure. The measured normalized group index of refraction dispersion curves for each of the layers is then compared to a reference data base of known materials and the material of each layer is identified. The physical thickness of each layer is then determined from the group index of refraction dispersion curve for the material in each layer and the measured optical thickness data. A method for determining the group index of refraction dispersion curve of a known material is also disclosed.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 8, 2018
    Applicant: Lumetrics, Inc.
    Inventors: Michael A. MARCUS, Donald S. GIBSON, Kyle J. HADCOCK, Filipp V. IGNATOVICH
  • Patent number: 10070791
    Abstract: An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: September 11, 2018
    Assignee: Carestream Dental Technology Topco Limited
    Inventors: Rongguang Liang, Victor C. Wong, Michael A. Marcus, Mark E. Bridges, Paul O. McLaughlin, Peter D. Burns, David L. Patton
  • Patent number: 10006754
    Abstract: An interferometer apparatus which include two or more coupled fiber optic Michelson interferometers using fiber optic stretches which stretch two or more optical fibers wound around the perimeter of the optical fiber stretchers by the same amount is disclosed. Preferably a pair of reference and sample fiber optic stretches are utilized which run in a push-pull mode of operation. When one of the interferometers is a coherent light interferometer it can be used as a reference distance scale for all of the remaining low coherence light interferometer. A method for measuring a physical property of a device under test is also disclosed using the apparatus of the present invention.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: June 26, 2018
    Assignee: Lumetrics, Inc.
    Inventors: Donald S. Gibson, Filipp V. Ignatovich, Michael A. Marcus
  • Patent number: 9998919
    Abstract: A method for establishing credentials for securing text message communications. The method includes receiving, at a text messaging hub executing at a server device, a text message from a user, the text message being directed to a service number and including (1) a user number and (2) a request to establish a secure credential for communicating with a text messaging application. The method also includes transmitting, by the text messaging hub executing at the server device, an initiation message to the user, the initiation message includes a user-specific system number to which the user is to direct future text messages.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: June 12, 2018
    Assignee: Google LLC
    Inventors: Dror Michael Marcus, Aviad Barzilai, Brian Eaton, Guy Flysher, Mark A. Grossman, Shai Gutner, Divon Mordechai Lan, Michal Maor, Natalia Marmasse, Asaf Revach, Billy Kim Rios, Eran Werner
  • Patent number: 9958355
    Abstract: An apparatus for measuring the optical performance characteristics and dimensions of an optical element comprising a low coherence interferometer and a Shack-Hartmann wavefront sensor comprising a light source, a plurality of lenslets, and a sensor array is disclosed. The low coherence interferometer is configured to direct a measurement beam along a central axis of the optical element, and to measure the thickness of the center of the optical element. The light source of the Shack-Hartmann wavefront sensor is configured to emit a waveform directed parallel to and surrounding the measurement beam of the interferometer, through the plurality of lenslets, and to the sensor array. A method for measuring the optical performance characteristics and dimensions of a lens using the apparatus is also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: May 1, 2018
    Assignee: Lumetrics, Inc.
    Inventors: Filipp V. Ignatovich, Donald S. Gibson, Michael A. Marcus
  • Patent number: 9665817
    Abstract: A computer-implemented technique can receive, at a computing device, a uniform resource locator (URL) for a web page and an image. A number of pixels corresponding to a desired resolution for encoding the image is determined and the image is converted to a modified image having the desired resolution. The technique can then generate a two-dimensional barcode by: (i) generating first data representative of the modified image, (ii) appending the first data to either an end of the URL to obtain a first modified URL or after a terminator bit of the two-dimensional barcode, (iii) generating second data representative of the second modified URL or the URL, and (iv) generating third data representative of an error correction code (ECC) based on the first data and the second data, wherein the two-dimensional barcode is generated based on the first data, the second data, and the third data.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 30, 2017
    Assignee: Google Inc.
    Inventors: David K. Windmueller, Daniel Jules Switkin, Dror Michael Marcus, Asaf Revach
  • Publication number: 20170102222
    Abstract: An interferometer apparatus which include two or more coupled fiber optic Michelson interferometers using fiber optic stretches which stretch two or more optical fibers wound around the perimeter of the optical fiber stretchers by the same amount is disclosed. Preferably a pair of reference and sample fiber optic stretches are utilized which run in a push-pull mode of operation. When one of the interferometers is a coherent light interferometer it can be used as a reference distance scale for all of the remaining low coherence light interferometer. A method for measuring a physical property of a device under test is also disclosed using the apparatus of the present invention.
    Type: Application
    Filed: September 19, 2016
    Publication date: April 13, 2017
    Applicant: Lumetrics, Inc.
    Inventors: Donald S. GIBSON, Filipp V. IGNATOVICH, Michael A. MARCUS
  • Patent number: 9551790
    Abstract: A method including placing first and second measurement devices proximate first and second aircraft doors, respectively, and determining a first position of the second measurement device relative to a second position of the first measurement device. The method includes placing first and second pluralities of reflective devices inside the aircraft proximate the first and second doors, respectively. The method includes measuring first and second distances from the first and second measurement devices to the first and second pluralities of reflective devices, respectively, and measuring second distances from the second measurement device to the second plurality of reflective devices. Based on a determined position of the second measurement device and further based on the first distances and second distances, third distances are determined between each of the first and second pluralities of reflective devices. The third distances provide a measurement baseline for points on a fuselage and wings.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: January 24, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Bobby Joe Marsh, Michael Anthony Lazar, Kinson D. Vanscotter, Barry Theophile Cooke, Leonard S. Bodziony, Richard M. Coleman, Michael Marcus Vander Wel, Andrew S. Olson, Douglas V. Dorsey, Orval Marion Nobles
  • Patent number: 9506837
    Abstract: An apparatus for determining the angular error in the placement of fiducial marks on a toric intraocular lens with respect to the true location of a meridional axis of the intraocular lens, the fiducial marks defining an estimate of the angular orientation of the meridional axis of the intraocular is disclosed. The apparatus includes a rotatable intraocular lens holder coupled to drive assembly and an actuator which are mounted into an optical measurement cell receptacle of a wavefront measuring instrument or an angular error measuring instrument. A method for determining the angular error in the placement of fiducial marks on a toric intraocular lens with respect to the true location of a meridional axis of the intraocular lens is also disclosed.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 29, 2016
    Assignee: Lumetrics, Inc.
    Inventors: John Solpietro, David Compertore, Michael A. Marcus
  • Patent number: 9448058
    Abstract: An interferometer apparatus which include two or more coupled fiber optic Michelson interferometers using fiber optic stretches which stretch two or more optical fibers wound around the perimeter of the optical fiber stretchers by the same amount is disclosed. Preferably a pair of reference and sample fiber optic stretches are utilized which run in a push-pull mode of operation. When one of the interferometers is a coherent light interferometer it can be used as a reference distance scale for all of the remaining low coherence light interferometer. A method for measuring a physical property of a device under test is also disclosed using the apparatus of the present invention.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: September 20, 2016
    Assignee: Lumetrics, Inc.
    Inventors: Donald S. Gibson, Filipp V. Ignatovich, Michael A. Marcus