Patents by Inventor Michael A. Rockendal

Michael A. Rockendal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7410627
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: August 12, 2008
    Assignee: American Soda, LLP
    Inventors: Max E. Ramey, John S. McEwan, Kevin L. Green, Charles L. Yates, Allan L. Turner, Michael A. Rockendal, Irvin P. Nielsen, Michael P. Hardy, Rex Goodrich
  • Patent number: 7128886
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: October 31, 2006
    Assignee: Solvay Chemicals, Inc.
    Inventors: Max E. Ramey, John S. McEwan, Kevin L. Green, Charles L. Yates, Allan L. Turner, Michael A. Rockendal, Irvin P. Nielsen, Michael P. Hardy, Rex Goodrich
  • Publication number: 20060120942
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Application
    Filed: January 25, 2006
    Publication date: June 8, 2006
    Inventors: Max Ramey, John McEwan, Kevin Green, Charles Yates, Allan Turner, Michael Rockendal, Irvin Nielsen, Michael Hardy, Rex Goodrich
  • Patent number: 6854809
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: February 15, 2005
    Assignee: American Soda, LLP
    Inventors: Max E. Ramey, John S. McEwan, Kevin L. Green, Charles L. Yates, Allan L. Turner, Michael A. Rockendal, Irvin P. Nielsen, Michael P. Hardy, Rex Goodrich
  • Publication number: 20040026982
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Application
    Filed: July 15, 2003
    Publication date: February 12, 2004
    Applicant: American Soda, LLP
    Inventors: Max E. Ramey, John S. McEwan, Kevin L. Green, Charles L. Yates, Allan L. Turner, Michael A. Rockendal, Irvin P. Nielsen, Michael P. Hardy, Rex Goodrich
  • Patent number: 6609761
    Abstract: A method for solution mining nahcolite, capable of extracting nahcolite from geological formations lean in nahcolite comprising injecting high pressure water (which may include recycled aqueous solution of bicarb and sodium carbonate) at a temperature of at least 250° F. into the formation, dissolving nahcolite in the hot water to form a production solution and recovering the production solution. The invention also includes the processing of the production solution to provide sodium carbonate and, optionally, sodium bicarbonate, comprising: decomposing the sodium bicarbonate portion of the hot aqueous production solution to form a hot aqueous solution of sodium carbonate; evaporating water from the hot aqueous solution comprising sodium carbonate to form a concentrated solution of sodium carbonate; producing sodium carbonate monohydrate from the concentrated solution of sodium carbonate by crystallization; and dewatering and calcining the sodium carbonate monohydrate to produce anhydrous sodium carbonate.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: August 26, 2003
    Assignee: American Soda, LLP
    Inventors: Max E. Ramey, John S. McEwan, Kevin L. Green, Charles L. Yates, Allan L. Turner, Michael A. Rockendal, Irvin P. Nielsen, Michael P. Hardy, Rex Goodrich