Patents by Inventor Michael A. Vail

Michael A. Vail has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520025
    Abstract: Embodiments of the invention relate to bearing assemblies and associated cardiopulmonary bypass blood pumps in which the bearing assembly includes a stator and a rotor each including bearing surfaces oriented so as to be generally opposed to one another. The bearing surface may comprise a polycrystalline diamond material including a plurality of bonded diamond grains defining a plurality of interstitial regions therebetween, in which a non-metallic catalyst (e.g., a carbonate) and/or at least one derivative thereof is disposed interstitially between the bonded diamond grains.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 31, 2019
    Assignee: US Synthetic Corporation
    Inventors: S. Barrett Peterson, Michael A. Vail
  • Patent number: 10507565
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, a PDC includes a polycrystalline diamond (“PCD”) table bonded to a substrate. At least a portion of the PCD table includes a plurality of diamond grains defining a plurality of interstitial regions. The plurality of interstitial regions includes a metal-solvent catalyst. The plurality of diamond grains exhibit an average grain size of about 30 ?m or less. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit an average electrical conductivity of less than about 1200 S/m. Other embodiments are directed to PCD, employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 17, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay, Brandon P. Linford
  • Patent number: 10508502
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 17, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Patent number: 10464273
    Abstract: Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: November 5, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail, Jiang Qian, Jason K. Wiggins, Mark P. Chapman, Arnold D. Cooper, Debkumar Mukhopadhyay, Amy Leigh Rodriguez, Stephen Rudger Adams
  • Publication number: 20190211629
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Publication number: 20190200818
    Abstract: Exemplary embodiments of wipes dispensers are disclosed herein. An exemplary wipes dispenser having a self-centering nozzle includes a container, a plurality of wipes contained within the container, a fluid for wetting the plurality of wipes, a receiving member connected to the container, and an outlet nozzle housing for holding an elastomeric outlet nozzle. The nozzle housing is connected to the receiving member so that the nozzle housing is movable between two or more positions. A biasing member is connected to one of the receiving member, the nozzle housing and the elastomeric outlet nozzle. The elastomeric outlet nozzle moves from a centered upright position, the biasing member deflects and biases the outlet nozzle toward a centered position.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Christopher J. Mann, Aaron D. Marshall, Nick E. Ciavarella, Jonathan Michael Johnson, Donald R. Harris, Kevin Michael Vail, Jenna Ann Matus
  • Patent number: 10315288
    Abstract: In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: June 11, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Jiang Qian, C. Eugene McMurray, Debkumar Mukhopadhyay, Jason K. Wiggins, Michael A. Vail, Kenneth E. Bertagnolli
  • Patent number: 10287822
    Abstract: In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 14, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, David P. Miess, Jiang Qian, Jason K. Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Patent number: 10252233
    Abstract: In an embodiment, a cell assembly for use in a high-pressure cubic press may include at least one can assembly containing a diamond volume. The at least one can assembly may include an end surface in proximity to the diamond volume. The cell assembly may include at least one heating element including a major surface generally opposing and positioned adjacent to the end surface of the at least one can assembly. The at least one heating element may be positioned and configured to heat the diamond volume. The cell assembly may include at least one pressure transmitting medium extending about the at least one can assembly, and a gasket medium that defines a receiving space configured to receive the at least one can assembly, the one or more heating elements, and the at least one pressure transmitting medium.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: April 9, 2019
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail, Arnold D. Cooper, Paul Douglas Jones, Damon B. Crockett
  • Publication number: 20180310782
    Abstract: Exemplary embodiments of wipes dispensers are disclosed herein. An exemplary wipes dispenser includes a container, a plurality of wipes contained within the container, a fluid for wetting the plurality of wipes and a self-orientating outlet nozzle. The self-orientating outlet nozzle includes a moveable outlet opening. The moveable outlet opening aligns with the direction of pull of the wipe when the wipe is pulled out of the dispenser at an angle that is not substantially vertical.
    Type: Application
    Filed: April 27, 2018
    Publication date: November 1, 2018
    Inventors: Donald R. Harris, Aaron D. Marshall, Nick E. Ciavarella, Jonathan Michael Johnson, Christopher James Mann, Kevin Michael Vail, Jenna Ann Matus
  • Patent number: 10101263
    Abstract: Embodiments of methods are disclosed for characterizing a tested superabrasive element, such as a polycrystalline diamond element. In an embodiment, a method of characterizing the relative strength of a superabrasive element is disclosed. A first superabrasive element and a second superabrasive element are positioned upper surface to upper surface, including an area of overlap between the upper surfaces. A load is applied while the first and second superabrasive elements are overlapped until failure of one or both of the first or second superabrasive elements fail. A relative strength is determined using at least the load during failure as a parameter.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: October 16, 2018
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli, Jason K. Wiggins
  • Patent number: 10099346
    Abstract: Embodiments relate to PDCs, methods of fabricating PDCs, and applications for such PDCs. In an embodiment, a PDC includes a substrate and a pre-sintered PCD table including an interfacial surface that is bonded to the substrate. The pre-sintered PCD table may be substantially free of leaching by-products in a region at least proximate to the interfacial surface. In an embodiment, a method of fabricating a PDC includes providing an at least partially leached PCD including an interfacial surface. The method includes removing at least some leaching by-products from the at least partially leached PCD table. After removing the at least some leaching by-products, the method includes bonding the interfacial surface of the at least partially leached PCD table to a substrate to form a PDC.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: October 16, 2018
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli
  • Publication number: 20180179114
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: February 21, 2018
    Publication date: June 28, 2018
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael Vail, Debkumar Mukhopadhyay
  • Patent number: 9932274
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteds (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: April 3, 2018
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael Vail, Debkumar Mukhopadhyay
  • Patent number: 9908215
    Abstract: A method of processing a polycrystalline diamond material includes exposing at least a portion of a polycrystalline diamond material to a processing agent for processing at least a portion of the polycrystalline diamond material. The method further includes applying a body force to the volume of processing agent while at least the portion of the polycrystalline diamond material is exposed to the processing agent, and heating at least one of the processing agent and at least the portion of the polycrystalline diamond material exposed to the processing agent during application of the body force to the processing agent.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: March 6, 2018
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Michael A. Vail, Heather Marie Schaefer, Adam M. Ziegenfelder
  • Patent number: 9719307
    Abstract: A polycrystalline diamond compact useful for wear, cutting, drilling, drawing and like applications is provided with a first diamond region remote from the working surface which has a metallic catalyzing material and a second diamond region adjacent to or including the working surface containing a non-metallic catalyst and the method of making such a compact is provided. This compact is particularly useful in high temperature operations, such as hard rock drilling because of the improved thermal stability at the working surface.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: August 1, 2017
    Assignee: U.S. Synthetic Corporation
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail
  • Publication number: 20170210081
    Abstract: Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
    Type: Application
    Filed: January 10, 2017
    Publication date: July 27, 2017
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail, Jiang Qian, Jason K. Wiggins, Mark P. Chapman, Arnold D. Cooper, Debkumar Mukhopadhyay, Amy Leigh Rodriguez, Steven Rudger Adams
  • Patent number: 9657529
    Abstract: Embodiments of the invention relate to thermally-stable polycrystalline diamond compacts (“PDCs”), and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate and a pre-sintered polycrystalline diamond (“PCD”) table bonded to the substrate. The pre-sintered PCD table includes bonded diamond grains defining a plurality of interstitial regions. The pre-sintered PCD table further including a first region remote from the substrate including a nonmetallic catalyst and a metallic catalyst each of which is disposed interstitially between the bonded diamond grains thereof, and a second region bonded to the substrate including a metallic-catalyst infiltrant disposed interstitially between the bonded diamond grains thereof. A nonplanar boundary is located between the first region and the second region.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: May 23, 2017
    Assignee: US SYNTHETICS CORPORATION
    Inventors: Kenneth E. Bertagnolli, Michael A. Vail
  • Patent number: 9643373
    Abstract: In an embodiment, a cell assembly for use in a high-pressure cubic press may include at least one can assembly containing a diamond volume. The at least one can assembly may include an end surface in proximity to the diamond volume. The cell assembly may include at least one heating element including a major surface generally opposing and positioned adjacent to the end surface of the at least one can assembly. The at least one heating element may be positioned and configured to heat the diamond volume. The cell assembly may include at least one pressure transmitting medium extending about the at least one can assembly, and a gasket medium that defines a receiving space configured to receive the at least one can assembly, the one or more heating elements, and the at least one pressure transmitting medium.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: May 9, 2017
    Assignee: US SYNTHETIC CORPORATION
    Inventors: Kenneth E Bertagnolli, Michael A Vail, Arnold D Cooper, Paul Douglas Jones, Damon B Crocket
  • Patent number: 9643293
    Abstract: Embodiments of the invention relate to methods of fabricating a polycrystalline diamond compacts and applications for such polycrystalline diamond compacts. In an embodiment, a method of fabricating a polycrystalline diamond body includes mechanically milling non-diamond carbon and a sintering aid material for a time and aggressiveness sufficient to form a plurality of carbon-saturated sintering aid particles and sintering a plurality of diamond particles in the presence of the plurality of carbon-saturated sintering aid particles to form the polycrystalline diamond body.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: May 9, 2017
    Assignee: US SYNTHETIC CORPORATION
    Inventors: David P. Miess, Michael A. Vail, C. Eugene McMurray